首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plastids of young dark-grown bean leaves, exposed to periodiclight are agranal, devoid of chlorophyll b and contain primarythylakoids and chlorophyll a. Transfer of these plants to continuousillumination results in synthesis of new chlorophyll a, chlorophyllb and grana. This study was done in order to study whether andhow the grana are formed from preexisting primary thylakoids.14C--aminolevulinic acid was used to label the chlorophyll aof the primary thylakoids, and its fate was studied after transferof the plants to continuous light. It was found that chlorophyll b and grana become 14C-labelled.The total radioactivity of chlorophyll b per bean increasedwith the parallel decrease of that of chlorophyll a. All subchloroplastfractions, obtained after digitonin disruption of chloroplasts,contained chlorophyll a of equal specific radioactivity. Thespecific radioactivity of chlorophyll b was lower than thatof chlorophyll a, and, in addition, it was lower in the granathan in the stroma lamellae fraction. The data suggest that chlorophyll b is formed from chlorophylla; the grana are formed by stacking of preexisting primary thylakoids;chlorophyll b is synthesized faster in the grana than the stromalamellae; the newly formed chlorophyll a molecules are distributedat random throughout the developing photosynthetic membraneand not on specific growing sites. (Received April 24, 1976; )  相似文献   

2.
Phytoplankton production is determined by growth, senescence, sinking and zooplankton grazing. In an attempt to follow algal senescence and grazing, some authors have used HPLC fluorescence detection of chlorophyll a breakdown products. Laboratory grazing experiments have shown that copepods reduce chlorophyll a from diatoms leading to an increase in pheophytin a rather than pheophorbide a. However, field measurements only indicated a slight increase of pheopigment concentrations in summer. During this period, high heterotrophic activities (zooplankton and bacteria) seemed to be responsible for rapid pheopigment disappearance. On the other hand, highest chlorophyllide a levels appeared to be related to spring accumulation of nutrient-limited senescent algae. While increases in pheophytin a accounted for chlorophyll a consumption, changes in pheophorbide a concentrations could be linked to chlorophyllide a abundance. These results suggest that laboratory studies cannot be uncritically extrapolated to the field.  相似文献   

3.
The relationship between structure and spectroscopic characteristicsof the watersoluble chlorophyll protein complex isolated fromstems of Lepidium virginicum (CP663S) was studied. Additionof 0.08% SDS induced a red shift of the 663 nm absorption maximum.At the same time, under excitation at 435 nm, the maximum offluorescence emission shifted from 672 nm to 675 nm and thefluorescence yield increased. When CP663S was excited at 480nm, the 660 nm emission band of chlorophyll b became more prominent.Fluorescence lifetime of emission from chlorophyll a increasedon addition of SDS. The energy transfer from chlorophyll b tochlorophyll a was decreased by the SDS addition, as judged bythe fluorescence spectra and lifetime measurement. Symmetricalpositive and negative peaks of the circular dichroism (CD) spectrumaround 669 nm, which indicate the interaction between chlorophylla molecules at short distances, disappeared after addition ofSDS. These SDS-induced changes of spectroscopic characteristicsoccurred in similar SDS concentration ranges and were reversible.SDS polyacrylamide gel electrophoresis cleaved CP663S into subunits.Chlorophyll molecules moved with protein moieties. Glutaraldehydetreatment suppressed the effects of SDS on absorption, fluorescenceand CD characteristics. We conclude that chlorophyll moleculesin CP663S are in the hydrophobic region of the protein and theinteraction between chlorophyll a molecules occurs at shortdistances. Changes of spectroscopic characteristics are a resultof cleavage of CP663S. 1Present address: National Institute for Basic Biology, Okazaki444, Japan. (Received November 22, 1982; Accepted May 31, 1983)  相似文献   

4.
The dilution technique was used to estimate chlorophyll and pheopigment, net and gross production as well as zooplankton grazing over a 12-month period in a coastal lagoon in Southern France. Chlorophyll a (Cha) based gross growth rates of phytoplankton ranged from undetectable in February to 2.6 day−1 in June, corresponding to 3.8 divisions per day. Cha-based grazing rates ranged from undetectable in February to 1.1 d−1 in June. The seasonal growth pattern of picoplankton was similar to that of the whole community, with a peak in July, corresponding to four divisions per day. Grazing processes represented from 20 to 150% of the phytoplankton daily growth, and the grazing pressure was stronger on small phytoplankton cells than on larger cells. Gross growth rates of phytoplankton were related to zooplankton grazing rates, and both were related to water temperature. Mesozooplankton which escaped sampling or oysters had to be also invoked as additional sinks for the primary production. In the fall, pheopigment concentrations greater than chlorophyll concentrations coincided with high ammonium levels in the water column. Pheopigment a production rates were highly correlated to chlorophyll -based microzooplankton grazing rates. The pheopigment a to chlorophyll a ratio was correlated with ammonium concentrations and could be used an index of the balance between ammonium supply (degradation) and demand (uptake by phytoplankton). In addition, pheopigment degradation rates in absence of grazing could be related to irradiance, indicating photo-degradation of these compounds.  相似文献   

5.
Chlorophyllase was extracted from green cells of Chlorella protothecoidesby n-butanol treatment and purified 600-fold, as measured byenzyme activity in chlorophyll a hydrolysis, by ammonium sulfateprecipitation, chromatography on TEAE-cellulose column and gelfiltration with Sephadex G-200. At each purification step the following activities were compared:hydrolyses of chlorophyll a and methyl chlorophyllide a, methanolysisof chlorophyll a and transphythylation of methyl chlorophyllidea to chlorophyll a. The ratio of activities of chlorophyll a hydrolysis to chlorophylla methanolysis changed on purification and partial inactivationby heat, PCMB and phytol, as well as by varying the reactiontemperature, thus suggesting that the two reactions are notcatalyzed by a single enzyme. In contrast, the activity ratio of chlorophyll a methanolysisto transphytylation of methyl chlorophyllide a remained unaltered,indicating that these reactions can be forward and backwardreactions catalyzed by one enzyme. Results of kinetic studies also indicated that the chlorophyllaseof Chlorella protothecoides consists of at least two enzymes.One enzyme catalyzes chlorophyll a hydrolysis and the other,chlorophyll a methanolysis and the reverse reaction, transphytylationof methyl chlorophyllide a. (Received May 24, 1973; )  相似文献   

6.
Recently, it has been shown that ratios of chlorophyll a toparticulate phosphorus (Chl a/PP) and chlorophyll a to particulatenitrogen (Chl a/PN) were significantly higher in eutrophic thanoligo/mesotrophic waters in 17 lakes on the central volcanicplateau, North Island, New Zealand. This difference was thoughtto be due to an increase in the chlorophyll a content of phytoplanktonin these eutrophic lakes. Corresponding measurements of chlorophylla and phytoplankton cell volume made during this study do notsupport this hypothesis. However, ratios of chlorophyll a toadenosine triphosphate and estimates of percentage phytoplanktonbiomass were significantly higher (P<0.05) in our eutrophicthan oligo/mesotrophic samples, suggesting that Chl a/PP andChl a/PN may be high in eutrophic waters simply because phytoplanktoncomprise more of the total microbial biomass. This hypothesisis supported by a strong linear relationship (r=0.88, P<0.001)between Chl a/PP and percentage phytoplankton biomass in sixof our study lakes where corresponding measurements were made.  相似文献   

7.
Light-harvesting chlorophyll-protein was purified from thylakoidmembranes of the marine unicellular alga Nannochloropsis sp.(Eustigmatophyceae), which contains neither chlorophyll b norchlorophyll c. Solubilization of thylakoid membranes with octyl-ß-D-glucopyranosideor with digitonin followed by separation on sucrose densitygradient yielded a chlorophyll-protein complex composed of anapoprotein of 26 kDa and an average of 9 chlorophyll a and 4violaxanthin molecules per apoprotein. Excitation spectra ofchlorophyll a fluorescence for the algal thylakoid membranesindicated energy transfer from the xanthophylls; however, anyattempt to solubilize the membranes greatly decreased energytransfer which was further reduced as the purification proceeded.The 26 kDa polypeptide of the isolated light-harvesting complexdid not cross-react with polyclonal antibodies raised againstanalogous proteins from higher plants and chlorophyll a/c alga.The N-terminus amino acid sequence of the apoprotein shows significantstructural similarity to the N-termini of the mature light harvestingfucoxanthin, chlorophyll a/c proteins from the diatom Phaeodactylumtricornutum, but not with the N-termini of light-harvestingproteins from chlorophyll a/b containing organisms. (Received June 25, 1992; Accepted July 28, 1992)  相似文献   

8.
The principal pigment found in the majority of oxygenic photosyntheticorganisms is known to be chlorophyll a. However, we isolateda new oxygenic photosynthetic prokaryote that contained chlorophylld as a predominant pigment with chlorophyll a being a minorpigment. Chlorophyll d had previously been noted but its naturaloccurrence and function remained unclear. Cells of the new prokaryotehad an absorption maximum at red region of 714–718 nmdue to chlorophyll d absorption, but no characteristic absorptionpeak of chlorophyll a around 680 nm was observed. Chlorophylld of the new organism was identified spectrophotometricallyin several solvents and its chemical structure was confirmedby NMR and FABMS analysis. The cell also contained a chlorophyllc-like pigment, zeaxanthin and a-carotene but not chlorophyllb and ß-carotene. The content of chlorophyll d accountedfor more than 2% of the cell dry weight, while the content ofchlorophyll a was less than 0.1%. The chlorophyll a/d ratioremained between 0.03 and 0.09 under different culture conditions.The light absorption characteristics and the high content ofchlorophyll d along with the small content of chlorophyll aindicated the existence of a new light utilization mechanisminvolving chlorophyll d. (Received October 7, 1996; Accepted December 16, 1996)  相似文献   

9.
The absorption spectra of chlorophyll a were studied in aqueousdispersions of four major lipid components present in the thylakoidmembranes. Chlorophyll a in aqueous dispersions of uncharged galactolipidsrevealed two absorption bands, at 670 and 745 nm, when the molecularratio of chlorophyll to lipid was higher than 0.2. The latterband may be due to the formation of microcrystals of chlorophylla. Chlorophyll a in aqueous dispersions of negatively chargedlipids revealed a single absorption band at 670 nm. However,chlorophyll a was decomposed during measurement in these lipiddispersions. The absorption spectra of chlorophyll a in aqueous dispersionsof mixture of galactolipid and charged lipid were apparentlysimilar to those of chlorophyll a in the charged lipid dispersion.Chlorophyll a, however, was not decomposed in these aqueousdispersions of lipid mixtures. It is concluded that the presence of both galactolipid and chargedlipid are necessary to reconstruct the state of chlorophylla dissolved in the lipid phase in the thylakoid membranes. The red absorption band of chlorophyll a in the reconstructedsystem composed of chlorophyll a, charged and uncharged lipids,appeared at 670 nm with a half bandwidth of 22 nm. Analysisof the absorption spectrum in the fourth derivative and thecurve-fitting methods indicated that the red band was composedmainly of a single band with a peak at 670–671 nm. 1 Present address: Department of Biology, College of GeneralEducation, University of Tokyo, Komaba, Meguro-ku, Tokyo 153,Japan. (Received October 13, 1977; )  相似文献   

10.
The green colour (measured with reference to standard colourcharts) of sections of the Continuous Plankton Recorder (CPR)filtering silk was compared with estimates of chlorophyll aconcentration derived from a fluorometer mounted on the CPRduring seven tows in the North Sea between February and May1991. After the green colour was assessed, the abundance ofphytoplankton cells on the filtering silks was quantified bymicroscope analysis. Data were collected for 115 10-nautical-milesamples over a total of seven cruises. For these 115 samples,there was only a weak (F1.113 = 3.8, P = 0.05, r2 = 0.03) positiverelationship between the colour of the filtering silk and thechlorophyll a concentration. However, when this comparison wasrestricted to four tows (68 10-nautical-mile samples) wherethe recorded phytoplankton cell abundance on the silks was verylow, there was a highly significant (F1.66 /,69.1, P < 0.001,r2 = 0.51) positive relationship between the silk colour andthe chlorophyll a concentration. By measuring the relative colourintensity of CPR standard colour categories and quantifyingthe individual variation in the assessment of colour, a theoreticalmodel was developed which pedicted that if the silks were colouredin direct proportion to the chlorophyll a concentration in thewater, then the expert r2 for the relationship between silkcolour and chlorophyll a concentration would be 0.62. The greencolour recorded by the CPR survey was therefore identified asa quantitative index of chlorophyll a concentration, but onlywhen numbers of phytoplankton cells on the CPR silks are nothigh.  相似文献   

11.
Primary production in the deep chlorophyll maximum of the central North Sea   总被引:1,自引:0,他引:1  
Deep chlorophyll maxima (CM) are commonly observed in the summerstratified North Sea. This feature was studied north of DoggerBank in August and showed high chlorophyll a (Chl a) concentration(  相似文献   

12.
Light-harvesting chlorophyll a/b-proteins of photosystem II(LHC II) were purified from thylakoid membranes of the greenalga, Bryopsis maxima. Extraction with digitonin did not solubilizechlorophylls (Chl) and carotenoids to any significant extent.Two forms of purified LHC II, P4 and P5, with respective apparentparticle sizes of 280 and 295 kDa, were obtained by sucrosedensity gradient centrifugation and column chromatography onDEAE-Toyopearl. P4 and P5 had similar spectral absorption at77 K with Chl a maxima at 674, 658 and 438 nm and Chl b maximaat 649 and 476 nm. Carotene was not present in P4 or P5. Fluorescenceexcitation spectra demonstrated that Chl b, siphonaxanthin andsiphonein can efficiently transfer absorbed light energy toChl a. P4 and P5 each contained two apoproteins of 28 and 32kDa, with similar but not identical amino acid compositions.P5 contained 6 molecules of Chl a, 8 of Chl b and 5 of xanthophyll(three molecules of siphonaxanthin and one each of siphoneinand neoxanthin) per polypeptide. (Received September 11, 1989; Accepted December 11, 1989)  相似文献   

13.
Can phaeopigments be used as markers for Daphnia grazing in Lake Constance?   总被引:1,自引:0,他引:1  
The formation of chlorophyll a degradation products was measuredwith natural phytoplankton from Lake Constance and Daphnia magnaand native Daphnia as grazers in grazing experiments duringspring bloom conditions using high-pressure liquid chromatography(HPLC). Chlorophyll a start concentrations were between 1.2and 16.3 µg l–1; phaeopigment weights constituted5% of chlorophyll a weight. Only phaeophorbide a was a markerfor Daphnia grazing; concentrations of other phaeopigments (phaeophytina, chlorophyllide a and two unidentified phaeopigments) didnot increase during Daphnia grazing. Conversion efficiencies(chlorophyll a to phaeophorbide a) were between 0 and 43% ona weight basis, and between 0 and 65% on a molar basis. Conversionefficiencies were highest at high grazer density (40 Daphnial–1) and after a 24 h exposure time. Grazing by microzooplanktonprobably led to the formation of the two unidentified phaeopigments.In Lake Constance, Daphnia density was significantly positivelycorrelated with the phaeophorbide a/chlorophyll a ratio whenit was <5000 Daphnia m–3. However, when higher Daphniadensities were included in calculations, then Daphnia densitywas positively, but insignificantly, correlated with the phaeophorbidea/chlorophyll a ratio. This suggests that when the level offood per Daphnia is low, then grazing is more efficient withless production of phaeophorbide a and a higher production ofcolourless products.  相似文献   

14.
Investigations have been made on the changes in the levels ofprotochlorophyll, chlorophyll a and chlorophyll b in relationto the kinetin induced expansion of isolated pumpkin cotyledonsin the presence and absence of chloramphenicol. It has been shown that rise in pigment level keeps pace withexpansion growth of the cotyledons. Kinetin markedly promotes the synthesis of protochlorphyll withoutmuch affecting the rate of its photoreduction to chlorophyll. Chloramphenicol strongly inhibits the development of both chlorophylla and b. The inhibition seems to be due to its interferenceboth with the synthesis of protochlorophyll and its subsequentconversion to chlorophyll. The inhibitory effect of chloramphenicol on the formation ofchlorophyll a is greater than on that of chlorophyll b, suggestingthereby the probability of divergent pathways for the formationof the two chlorophylls. (Received December 21, 1966; )  相似文献   

15.
The chlorophyll a content of nicroparticles which passed throughglass fiber filters Whatman type GF/F but were retained on 0.2µm Nuclepore membranes was analyzed on a weekly basisover the course of 1 year in Kaneohe Bay, Hawaii. Depth profileswere also obtained at four oceanic stations off the islandsof Maui and Molokai, Hawaii. Experimental evidence indicatedthat these microparticles were photosynthetically active. Theproportion of microparticulate chlorophyll a could be up to35% of picoplankton chlorophyll a (2.0–0.2 µm sizerange) retained on a single pass through a 0.2 p.m Nucleporefilter. The filtrate from both GFIF and 0.2µm Nucleporefilters was found to contain chlorophyll a which could be retainedon a subsequent pass through either 0.2 µm Nuclepore orGF/F filters. Only serial filtration can ensure that essentiallyall picoplankton have been filtered from the water when eitherof these types of filters is used.  相似文献   

16.
Compositions of pigments and polypeptides of pale green membranesthat had been isolated from dark-grown cells of a chlorophyll-deficientmutant of Chlorella kessleri were investigated. They containedChl a in a level corresponding to about 1% of that present inthe thylakoid membranes isolated from autotrophically grownwild-type cells and a trace amount of chlorophyllide a, butneither Chl b nor carotenoids. The polypeptide profile of themutant membranes was similar to that of membranes isolated fromwild-type cells that were grown in the dark. Neither the chlorophyll-bindingsubunits of PSI nor the apoproteins of LHCP were detected bySDS-PAGE and immunoblot analysis. However, the light-minus-darkdifference spectrum of the mutant membranes revealed the presenceof the reaction-center chlorophyll of PSI (P700) at a molarratio of 190 chlorophyll (Chl a plus Chlide a) per P700. P700was more stable than Chl a and Chlide a in the light so thatprolonged illumination led to a decline in the Chl/P700 ratioto 24. The initial rate of P700 photooxidation in the mutantmembranes was comparable to that in CP1 isolated from the dark-grownwild-type cells. Under illumination with strong light, the initialrate was decreased in parallel to the decrease in Chl/P700 ratio.The results suggest that most of Chi present in the mutant membranescan transfer excitation energy to P700. (Received March 13, 1998; Accepted August 7, 1998)  相似文献   

17.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

18.
The thylakoid membrane of a thermophilic blue-green alga, Synechococcussp., was separated into four chlorophyll-containing fractionsby a single chromatographic manipulation with a diethylaminoethyl-cellulosecolumn after digitonin treatment. Photosystems I and II, orchlorophyll a forms, were unevenly distributed among the fourfractions, which were designated F-1, F-2, F-3 and F-4 in theorder of elution from the column. F-1 has a simple composition of the chlorophyll a form and totallylacks photochemical activity. This fraction may be an antennachlorophyll a-protein in the blue-green alga. F-2 is rich inshorter wavelength chlorophyll a forms and shows the three-bandedfluorescence emission spectrum characteristic of photosystemII at liquid nitrogen temperature. This fraction is highly activein 2,6-dichloroindophenol photoreduction and contains one photooxidizablecytochrome b559 per 50–100 chlorophyll a, whereas theP-700 content is as low as one P-700 per 2,000 chlorophyll a.Thus, F-2 represents photosystem II in a highly purified state.F-3 is rich in photosystem I, since this fraction is inactivein 2,6-dichloroindophenol photoreduction, and contains one P-700per 200 chlorophyll a and smaller amounts of cytochrome b559.Longer wavelength chlorophyll a forms are abundant and a peakat 730 nm is the most prominent in the low-temperature fluorescencespectrum in this fraction. F-4, which consists of larger membranefragments shows spectral and photochemical features similarto those of F-3. (Received August 8, 1979; )  相似文献   

19.
Pea plants were grown under intermittent illumination (ImL)conditions. The low dosage of light given to ImL plastids limitedthe rate of chlorophyll (Chl) a and Chl b biosynthesis and,therefore, it retarded the rate of photosynthetic unit formationand thylakoid membrane development. Depending on the developmentalstage of the photosynthetic unit, ImL plastids had variableChl a/Chl b ratios (2.7 <Chl a/Chlb<20) and showed distinctintermediates in the assembly of the chlorophyll a–b light-harvestingcomplex (LHC) of photosystem-II (PSII). The results are consistentwith a step-wise increment in the PSII antenna size involvingthree distinct forms of the PSII unit: (i) a PSII-core formwith about 37 Chl a molecules; (ii) a PSILß form containingthe PSII-core and the LHC-II-inner antenna with a total of about130 Chl (a + b) molecules, and (iii) the mature PSIIa form containingPSIIß and the LHC-II-peripheral antenna with a totalof 210–300 Chl (a + b) molecules. The thylakoid membranecontained polypeptide subunits b, c and d (the Lhcb1, 2 and3 gene products, respectively) when only the LHC-II-inner waspresent. Polypeptide subunit a, (the apoprotein of the chlorophyll-proteinknown as CP29), along with increased amounts of b and c appearedlater in the development of thylakoids, concomitant with theassembly of the LHC-II-peripheral. The results suggest thatpolypeptide subunit d has priority of assembly over subunita. It is implied that, of all LHC-II constituent proteins, subunitd is most proximal to the PSII-core complex and that it servesas a linker in the transfer of excitation energy from the bulkLHC-II (subunits b and c) to the PSII-core. The work also addressesthe origin of low-molecular-weight proteins (Mr = 19, 17.5 and13.4 kDa) which co-isolate with intact developing plastids andwhose abundance decreases during plastid development. Aminoacid compositional and immunoblot analyses show a nuclear histoneorigin for these low-molecular-weight proteins and suggest co-isolationof histone-containing nuclear vesicles along with intact developingplastids. 1Present address: Plant Physiology Research Group, The Universityof Calgary, Department of Biological Sciences, 2500 UniversityDrive N.W., Calgary, Alberta CANADA T2N 1N4.  相似文献   

20.
The spores of Anabaena doliolum formed in light (light spores)and after transfer to darkness (dark spores) are biochemicallydifferent in that the light spores contain chlorophyll a andphycocyanin, while dark spores seem to lack them. The apparentbiosyntheses accompanying dark-spore germination seem to proceedin the following order: RNA, chlorophyll a, phycocyanin andDNA. Results of chloramphenicol treatment indicate that proteinsynthesis precedes RNA synthesis. The biosynthetic events followingRNA synthesis show a requirement for light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号