首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-Glutamyl transpeptidase was purified from rat kidney by a procedure involving Lubrol extraction, acetone precipitation, ammonium sulfate fractionation, treatment with bromelain, and column chromatography on DEAE-cellulose and Sephadex G-100. The final preparation (enzyme III), which exhibits a specific activity about 8-fold higher than that of the purified rat kidney transpeptidase previously obtained in this laboratory (enzyme I), was apparently homogeneous on polyacrylamide gel electrophoresis. Enzyme III is a glycoprotein containing 10% hexose, 7% aminohexose, and 1.5% sialic acid; a tentative molecular weight value of about 70,000 was obtained by gel filtration. Enzyme III has a much lower molecular weight and a different amino acid and carbohydrate content than the less active rat kidney transpeptidase preparation previously obtained, but obtained, but the catalytic properties of these preparations are virtually identical. It is suggested that bromelain treatment may liberate the transpeptidase from a brush border complex that contains other proteins. An improved method is described for the isolation of the higher molecular weight form of the enzyme (enzyme I) in which affinity chromatography on concanavalin A-Sephrose is employed. The purified transpeptidase (enzyme III) is similar to the phosphate-independent maleate-stimulated glutaminase preparation obtained from rat kidney by Katunuma and colleagues with respect to amino acid and carbohydrate content, apparent molecular weight, and relative transpeptidase and maleate-stimulated "glutaminase" activities. Both of these enzyme preparations are much more active in transpeptidation reactions with glutathione and related gamma-glutamyl compounds than with glutamine. In the absence of maleate, the enzyme catalyzes the utilization of glutamine (by conversion to gamma-glutamylglutamine, glutamate, and ammonia) at about 2% of the rate observed for catalysis of transpeptidation between glutathione and glycylglycine; the utilization of glutamine occurs about 8 times more rapidly in the presence of 0.1 M maleate. The transpeptidation and maleate-stimulated glutaminase reactions catalyzed by both enzyme preprations are inhibited by 5 mM L-serine in the presence of 5 mM sodium borate. Studies on gamma-glutamyl transpeptidase and maleate-stimulated glutaminase in the kidneys of fetal rats, newborn rats, and rats after weaning showed parallel development of these activities. The evidence reported here and earlier work in this laboratory strongly support the conclusion that maleate-stimulated glutaminase activity is a catalytic function of gamma-glutamyl transpeptidase. The studies on the ontogeny of gamma-glutamyl transpeptidase and other data are considered in relation to the proposal that this enzyme is involved in amino acid and peptide transport. Its possible role in renal formation of ammonia is also discussed.  相似文献   

2.
gamma-Glutamyl transpeptidase, present in various mammalian tissues, transfers the gamma-glutamyl moiety of glutathione to a variety of acceptor amino acids and peptides. This enzyme has been purified from human kidney cortex about 740-fold to a specific activity of 200 units/mg of protein. The purification steps involved incubation of the homogenate at 37 degrees followed by centrifugation and extraction of the sediment with 0.1 M Tris-HCl buffer, pH 8.0, containing 1% sodium deoxycholate; batchwise absorption on DEAE-cellulose; DEAE-cellulose (DE52) column chromatography; Sephadex G-200 gel filtration; and affinity chromatography using concanavalin A insolubilized on beaded Agarose. Detergents were used throughout the purification of the enzyme. The purified enzyme separated into three protein bands, all of which had enzyme activity, on polyacrylamide disc electrophoresis in the presence of Triton X-100. The enzyme has an apparent molecular weight of about 90,000 as shown by Sephadex G-200 gel filtration, and appears to be a tetramer with subunits of molecular weights of about 21,000. The Km for gamma-glutamyl transpeptidase using the artificial substrate, gamma-glutamyl-p-nitroanilide, with glycylglycine as the acceptor amino acid was found to be about 0.8 mM. The optimum pH for the enzyme activity is 8.2 and the isoelectric point is 4.5. Both GSH and GSSG competitively inhibited the activity of gamma-glutamyl transpeptidase when gamma-glutamyl-p-nitroanilide was used as the substrate. Treatment of the purified enzyme with papain has no effect on the enzyme activity or mobility on polyacrylamide disc electrophoresis. The purified gamma-glutamyl transpeptidase had no phosphate-independent glutaminase activity. The ratio of gamma-glutamyl transpeptidase to phosphate-independent glutaminase changed significantly through the initial steps of gamma-glutamyl transpeptidase purification. These studies indicate that the transpeptidase and phosphate-independent glutaminase activities are not exhibited by the same protein in human kidney.  相似文献   

3.
A purification procedure, based on that previously used for rat kidney gamma-glutamyl transpeptidase, was used for the purification of glutathione oxidase (which converts glutathione to gluthathione disulfide). The two activities co-purified, the ratio of the activities remaining constant through all steps of the isolation procedure. The purified enzyme was separable into 12 isozymic species by isoelectric focusing. All 12 isozymes exhibited a constant ratio of transpeptidase to glutathione oxidase activities, strongly supporting the conclusion that conversion of glutathione to glutathione disulfide is a catalytic function of gamma-glutamyl transpeptidase. Modulation of oxidase activity by inhibitors and acceptor substrates of transpeptidase is discussed in relation to the possible glutathione binding sites involved in gamma-glutamyl transfer and oxidase activities of the enzyme.  相似文献   

4.
gamma-Glutamyl transpeptidase, which is composed of two unequal subunits, exhibits proteinase activity when treated with agents such as urea and sodium dodecyl sulfate. The heavy subunit is preferentially and rapidly degraded. The enzyme also degraded bovine serum albumin in the presence of urea; however, several other proteins and model proteinase substrates were not cleaved. Treatment of the enzyme with 6-diazo-5-oxo-L-norleucine, a gamma-glutamyl analog, results in parallel loss of transpeptidase and proteinase activities indicating that the site at which gamma-glutamylation of the enzyme occurs (presumably a hydroxyl group on the light subunit) is also involved in proteinase activity. The purified light subunit, but not the heavy subunit, exhibits proteinase activity even in the absence of urea. Results suggest that dissociation of the enzyme unmasks the proteinase activity of the light subunit involving the site at which gamma-glutamylation of the enzyme occurs, and that the heavy subunit may impose transpeptidase reaction specificity by contributing the binding domains for gamma-glutamyl substrates.  相似文献   

5.
P D Dass 《Life sciences》1983,33(18):1757-1762
This study demonstrates the formation of gamma-glutamyl peptides from glutamine and plasma amino acids, as catalyzed by gamma-glutamyl transpeptidase. It also establishes the effect of various amino acids in modulating the rate of glutamine utilization as well as the hydrolytic or transfer product formed. The mechanism of the utilization of glutamine as catalyzed by gamma-glutamyl transpeptidase, involves the formation of a gamma-glutamyl enzyme bound intermediate as the initial step, with release of the amide nitrogen as ammonium, NH+4, Figure 1. The gamma-glutamyl enzyme bound intermediate either reacts with the acceptor amino acids or water; reaction with amino acids yields gamma-glutamylpeptides via the transfer pathway and reaction with water yields glutamate via the hydrolytic pathway.  相似文献   

6.
gamma-Glutamyl transpeptidase purified from hog kidney cortex was implanted in the human erythrocyte membrane by incubation of erythrocytes at 37 degrees c with gamma-glutamyl transpeptidase-incorporated dipalmitoyl phosphatidylcholine vesicles. Membranes prepared from these implanted cells exhibited 4- to 5-fold increase in gamma-glutamyl transpeptidase activity. The association/insertion of gamma-glutamyl transpeptidase into erythrocyte membrane was further demonstrated by antibody to gamma-glutamyl transpeptidase. Implantation of gamma-glutamyl transpeptidase into erythrocyte membrane led to stimulation of uptake of glutamate and alanine, which are normally transported at a slow rate in human erythrocytes. The uptake of these amino acids in the implanted system was inhibited by inhibitors (serine-borate and azaserine) of transpeptidase activity as well as by antibody to gamma-glutamyl transpeptidase. These results in the implanted human erythrocytes demonstrate that gamma-glutamyl transpeptidase enzyme can mediate the translocation of amino acids and provide further evidence in support of its postulated role in the transport of amino acids in natural membranes.  相似文献   

7.
S S Tate 《FEBS letters》1986,194(1):33-38
The two subunits of gamma-glutamyl transpeptidase (EC 2.3.2.2) are derived from a single-chain glycosylated precursor. A small fraction of the propeptide survives proteolytic processing in the rat kidney and has been purified by an immunoaffinity technique. The propeptide contains determinants for both the subunits and its amino acid composition resembles that of the dimeric enzyme. However, the propeptide exhibits less than 2% of the transpeptidase activity shown by the dimeric enzyme.  相似文献   

8.
The kinetics of sheep kidney gamma-glutamyl transpeptidase was studied using a novel substrate L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate. When the substrate was incubated with the enzyme in the presence of an amino acid or peptide acceptor, the corresponding L-alpha-methyl-gamma-glutamyl derivatives of the acceptors were formed. In the absence of acceptor only hydrolysis occurred, and no transpeptidation products were detected. The presence of the methyl group on the alpha-carbon apparently prevents enzymatic transfer of the L-alpha-methyl-gamma-glutamyl residue to the amino group of the substrate itself (autotranspeptidation). When the enzyme was incubated with conventional substrates, such as glutathione or gamma-glutamyl-p-nitroanilide and an amino acid acceptor, hydrolysis, autotranspeptidation, and transpeptidation to the acceptor occurred concurrently. Initial velocity measurements in which the concentration of L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate was varied at several fixed acceptor concentrations, and either the release of alpha-aminobutyrate or the formation of the transpeptidation products was determined, yielded results which are consistent with a ping-pong mechanism modified by a hydrolytic shunt. A scheme of such a mechanism is presented. This mechanism predicts the formation of an alpha-methyl-gamma-glutamyl-enzyme intermediate, which can react with an amino acid to form the transpeptidation product; or in the absence of, or in the presence of low concentrations of amino acids, can react with water to form the hydrolytic products. Kinetic derivations for the reaction of the enzyme with the conventional substrate gamma-glutamyl-p-nitroanilide predict either linear or nonlinear double-reciprocal plots, depending on the prevalence of the hydrolytic, autotranspeptidation, or transpeptidation reactions. The results of kinetic experiments confirmed these predictions.  相似文献   

9.
Gamma-glutamyl transpeptidase, an enzyme of importance in glutathione metabolism, consists of two subunits, one of which (the light subunit, Mr 22,000; residues 380-568; rat kidney) contains residue Thr-523, which selectively interacts with the substrate analog acivicin to form an adduct that is apparently analogous to the gamma-glutamyl enzyme intermediate formed in the normal reaction (Stole, E., Seddon, A. P., Wellner, D., and Meister, A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1706-1709). The present studies indicate that specific arginine and lysine residues of the heavy subunit (Mr 51,000; residues 31-379) participate in catalysis by binding the substrates. Selective labeling studies of the enzyme with [14C]phenylglyoxal showed that Lys-99 and Arg-111 were modified. This appears to be the first instance in which phenylglyoxal was found to react with an enzyme lysine residue. Incorporation of [14C]phenylglyoxal into Lys-99 was decreased in the presence of acceptor site selective compounds. Incorporation into both Lys-99 and Arg-111 was decreased in the presence of glutathione. The findings suggest that Lys-99 and Arg-111 interact, respectively, with the omega- and alpha-carboxyl groups of glutathione. That these putative electrostatic binding sites are on the heavy subunit indicates that both subunits contribute to the active center. Two additional heavy subunit arginine residues become accessible to modification by phenylglyoxal when acivicin is bound, suggesting that interaction with acivicin is associated with a conformational change.  相似文献   

10.
Monoclonal antibodies (mAb) against the native form of rat kidney gamma-glutamyl transpeptidase (GGT) were isolated by screening hybridomas with rat kidney brush-border membrane vesicles. They were directed against protein rather than sugar epitopes in that each recognized all GGT isoforms. All of them inhibited partially the enzyme activity of GGT. They were specific in that they inhibited the rat enzyme, but not the mouse or human enzyme. Kinetic analyses were carried out with free GGT and GGT-mAb complexes with d-gamma-glutamyl-p-nitroanilide in the presence or absence of maleate, or in the presence or absence of alanine, cysteine, cystine or glycylglycine as gamma-glutamyl acceptors. mAbs 2A10 and 2E9 inhibited the hydrolytic and glutaminase activities of GGT and had little effect on the transpeptidation activity of the enzyme, whereas mAbs 4D7 and 5F10 inhibited transpeptidation, but not hydrolytic or glutaminase activities. mAb 5F10 mimicked the effect of maleate on GGT, in that it inhibited transpeptidation, enhanced the glutaminase activity and increased the affinity of the donor site of GGT for acivicin. Such mAbs may be useful for long-term studies in tissue cultures and in vivo, and for the identification of GGT epitopes that are important for the hydrolytic and transpeptidase activities.  相似文献   

11.
The heterodimeric enzyme gamma-glutamyl transpeptidase (EC 2.3.2.2) was isolated from adult rat kidney and purified to homogeneity for structural studies using papain solubilization and multiple chromatographies. Two-dimensional gel electrophoresis was found to resolve the active papain-purified enzyme into at least 18 components. Seven components with apparent molecular masses of 23,000-26,000 and isoelectric point range of 5.4-7.0 constitute the light subunit, and 11 components with apparent molecular mass of 51,000-53,000 and isoelectric point range of 5.8-7.1 constitute the heavy subunit. Immunoblot analysis of two-dimensional gels showed that all of these components are immunoreactive with a mixture of the two antibodies generated separately against the light and heavy subunits. Preparative subunit separation was achieved using reverse-phase HPLC under acidic but nonreducing conditions. N-Terminal amino acid sequencing of the separated subunits of the papain-purified enzyme yielded sequence information for the first 32 residues of the heavy chain with the N-terminal starting sequence Gly-Lys-Pro-Asp-His-Val-Tyr-Ser-Arg-Ala, and for the first 36 residues of the light subunit with the N-terminal starting sequence Thr-Ala-His-Leu-Ser-Val-Val-Ser-Glu-Asp.  相似文献   

12.
Gamma-glutamyl transpeptidase (gamma-GTP) is suggested to act as a carrier in the group translocation of oligopeptides and possibly some amino acids across cellular membranes. It is proposed that the process may involve the repetitive transfer of gamma-glutamyl groups to acceptor peptides which are being translocated from the exterior of the cell to its interior. After group translocation of the peptides has occurred with concomitant formation of gamma-glutamyl peptide products, it is suggested that the products might then be utilized as substrate for the enzyme in order to permit the translocation of other peptides from the exterior. The system is economical and requires only that it be primed with an appropriate source of gamma-glutamyl peptides, such as glutathione. In contrast to most group translocation systems previously described, substrate-product reutilization by gamma-GTP would not be expected to accumulate peptides against a concentration gradient. Mechanisms for maintaining low intracellular concentrations of the translocated peptides are described. Studies on acceptor substrate specificity of gamma-GTP from bovine choroid plexus and rat kidney show some glycyl peptides are much better substrates than free amino acids in accord with the proposal that gamma-GTP might be primarily involved in peptide translocation. Both kinetic and topological evidence support the suggestion that repetitive transfer of gamma-glutamyl moieties by gamma-GTP could occur during group translocation of peptides and possibly some amino acids.  相似文献   

13.
Glycine and taurine conjugates of bile acids modulate gamma-glutamyl transpeptidase by interacting with the cysteinylglycine binding site (acceptor site) of the enzyme. These compounds stimulate hydrolysis of glutamine and S-methylglutathione and the rate of the inactivation of the enzyme by the gamma-glutamyl site-directed reagent, AT-125 (L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). Transpeptidation between S-methylglutathione and methionine was inhibited by these compounds. These effects resemble those caused by hippurate; the glycine derivatives of bile acids, however, exhibit a much greater affinity for transpeptidase than hippurate. Cholate, as shown previously for benzoate, also seems to bind to a portion of the acceptor site as indicated by its effects on S-methylglutathione utilization and AT-125-dependent inactivation of the enzyme. The Kd values for cholate and benzoate are, however, at least one order of magnitude larger than those for their respective glycine derivatives. The acceptor site-directed modulators increase the affinity of the enzyme for AT-125 and kinetic and binding studies show that binding of gamma-glutamyl site-directed reagents increases the affinity of the enzyme for cholate. These results thus indicate cooperative interactions between the gamma-glutamyl donor and acceptor binding domains of the transpeptidase active center.  相似文献   

14.
Renal gamma-glutamyl transpeptidases: structural and immunological studies   总被引:2,自引:0,他引:2  
Mammalian kidney gamma-glutamyl transpeptidases are compared with respect to subunit size, amino-terminal sequences of the two subunits, immunological, and some catalytic properties. The species-related variation in the apparent molecular weight of the subunits has been shown to be primarily due to the extent and nature of protein glycosylation. Using antibodies raised against the native enzymes and isolated sodium dodecyl sulfate-treated subunits, it is shown that the transpeptidases share some antigenic determinants. Some of these determinants in the highly glycosylated transpeptidase subunits can be detected by the antibodies only upon deglycosylation of the subunits. The amino-terminal sequences of the subunits exhibit considerable homology, in agreement with the immunological data. Thus, there are two segments of identity (3 and 5 residues in length, respectively) in the first 17 amino-terminal residues of the heavy subunits of rat, bovine, dog, and human kidney transpeptidases (papain-solubilized). Of particular interest is the finding of 91 to 96% identity in the first 23 amino-terminal residues of the small subunit of these transpeptidases. The small subunit contains the gamma-glutamyl binding site of the enzyme. There are three segments of identity (7, 6, and 8 residues in length, respectively) in the first 23 residues, each separated by either a Ser or an Ala residue. The first 7 amino-terminal residues of the small subunit in all four species are identical, indicating a high degree of specificity in the proteolytic processing of the common, single-chain precursor of the two subunits. Differences noted between transpeptidases in their relative acceptor specificity and in their susceptibility to inactivation by the glutamine antagonist, AT-125 (acivicin), must reflect subtle structural differences in their active center domains.  相似文献   

15.
GAMMA-Glutamyl transpeptidase, gamma-glutamyl cyclotransferase, L-pyrrolidone carboxylate hydrolase, gamma-glutamylcysteine synthetase and glutathione synthetase, the enzymes of the gamma-glutamyl cycle, were found in mouse brain, liver and kidney. The activity of L-pyrrolidone carboxylate hydrolase was many times lower than the activities of the other enzymes, and thus the conversion of L-pyrrolidone carboxylate to L-glutamate is likely to be the rate-limiting step of the cycle. The specificity of gamma-glutamyl cyclotransferase from mouse tissues was similar to that from rat tissues. The concentration of pyrrolidone carboxylate and gamma-glutamyl amino acids, intermediates of the gamma-glutamyl cycle, was determined by a gas chromatographic procedure coupled with electron capture detection. Administration of L-2-aminobutyrate, an amino acid that is utilized as substrate in the reaction catalyzed by gamma-glutamylcysteine synthetase, led to a large accumulation of gamma-glutamyl-2-aminobutyrate and pyrrolidone carboxylate in mouse tissues. L-Methionine-RS-sulfoximine, an inhibitor of gamma-glutamylcysteine synthetase, abolished the increase in concentration of pyrrolidone carboxylate. No accumulation of pyrrolidone carboxylate was observed after L-cysteine. The separate administration of several protein amino acids had little effect on the concentration of pyrrolidone carboxylate; however formation of small amounts of the corresponding gamma-glutamyl derivatives (e.g. gamma-glutamylmethionine and gamma-glutamylphenylalanine) was detected. These intermediates are probably formed by transpeptidation between glutathione and the corresponding amino acid, catalyzed by gamma-glutamyl transpeptidase. The concentration of pyrrolidone carboxylate increased significantly after administration of a mixture containing all protein amino acids, the highest increase occurring in the kidney. The results suggest that two separate pathways for the formation of gamma-glutamyl amino acids and pyrrolidone carboxylate exist in vivo. One of these results from the function of gamma-glutamylcysteine synthetase in glutathione synthesis. The other pathway involves the amino-acid-dependent degradation of glutathione, mediatedby gamma-glutamyl transpeptidase. Only very small amounts of free intermediates are apparently derived from the latter pathway, suggesting that the gamma-glutamyl amino acids formed in this pathway are either enzyme-bound or are directly hydrolyzed to glutamate and free amino acid.  相似文献   

16.
Modulation of gamma-glutamyl transpeptidase activity by bile acids   总被引:1,自引:0,他引:1  
The free bile acids (cholate, chenodeoxycholate, and deoxycholate) stimulate the hydrolysis and transpeptidation reactions catalyzed by gamma-glutamyl transpeptidase, while their glycine and taurine conjugates inhibit both reactions. Kinetic studies using D-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor indicate that the free bile acids decrease the Km for hydrolysis and increase the Vmax; transpeptidation is similarly activated. The conjugated bile acids increase the Km and Vmax of hydrolysis and decrease both of these for transpeptidation. This mixed type of modulation has also been shown to occur with hippurate and maleate (Thompson, G.A., and Meister, A. (1980) J. Biol. Chem. 255, 2109-2113). Glycine conjugates are substantially stronger inhibitors than the taurine conjugates. The results with free cholate indicate the presence of an activator binding domain on the enzyme with minimal overlap on the substrate binding sites. In contrast, the conjugated bile acids, like maleate and hippurate, may overlap on the substrate binding sites. The results suggest a potential feedback role for bile ductule gamma-glutamyl transpeptidase, in which free bile acids activate the enzyme to catabolize biliary glutathione and thus increase the pool of amino acid precursors required for conjugation (glycine directly and taurine through cysteine oxidation). Conjugated bile acids would have the reverse effect by inhibiting ductule gamma-glutamyl transpeptidase.  相似文献   

17.
The enzyme gamma-glutamyl transpeptidase (GGT), implicated in many physiological processes, catalyses the transfer of a gamma-glutamyl from a donor substrate to an acyl acceptor substrate, usually an amino acid or a peptide. In order to investigate which moieties of the donor substrate are necessary for recognition by GGT, the structure of the well-recognized substrate L-gamma-glutamyl-p-nitroanilide was modified. Several activated esters and their amide derivatives were synthesized and used as substrates. Kinetic (K(m) and V(max)) and inhibition constants (K(i)) were measured and reveal that almost the entire gamma-glutamyl moiety is necessary for recognition in the binding site of the donor substrate. The implied presence of certain complementary amino acids in this substrate binding site will allow the more rational design of various substrate analogues and inhibitors.  相似文献   

18.
Hippurate and maleate have been shown to bind to the aminoacylglycine (acceptor) binding site of γ-glutamyl transpeptidase, thereby stimulating the hydrolysis of γ-glutamyl compounds at the expense of transpeptidation (Thompson, G. A., and Meister, A. (1979) J. Biol. Chem.254, 2956–2960; Thompson, G. A., and Meister, A. (1980) J. Biol. Chem.255, 2109–2113). It has now been found that a number of benzoate derivatives also bind and modulate rat kidney transpeptidase, as indicated by their ability to enhance the rate of inactivation of transpeptidase by the glutamine antagonist l-(αS, 5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Furthermore, rapid loss of transpeptidase activity results upon preincubation of the enzyme with the diazonium derivatives of p-aminohippurate and p-aminobenzoate. The modified enzyme can still hydrolyze γ-glutamyl substrates but is no longer modulated by hippurate and maleate. Loss of transpeptidase activity was not associated with incorporation of radioactive label from diazotized [14C]p-aminohippurate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the modified enzyme revealed a nondissociable species, Mr 68,000, shown to result from crosslinking of the two subunits of transpeptidase (Mr 46,000 and 22,000, respectively). The crosslinking of the subunits paralleled the extent of inactivation of transpeptidation activity and both crosslinking and inactivation were prevented by treatment with the diazotized derivatives in the presence of either hippurate or maleate. These and other data indicate that the diazonium derivatives of p-aminohippurate and p-aminobenzoate interact with the acceptor binding site and produce a stable bond between amino acid residues in the vicinity of this site which, thus, appears to be located in the intersubunit contact region.  相似文献   

19.
gamma-Glutamyl transpeptidase (purified from rat kidney) was incubated with glutathione and a mixture of amino acids that closely approximates the amino acid composition of blood plasma, and the relative extents of transpeptidation and hydrolysis were determined by quantitative measurement of the products formed (glutamate, cysteinylglycine, gamma-glutamyl amino acids). At pH 7.4, in the presence of 50 microM glutathione and the amino acid mixture, about 50% of the glutathione that was utilized participated in transpeptidation. Studies in which the formation of individual gamma-glutamyl amino acids was determined in the presence of glutathione and the amino acid mixture showed that L-cystine and L-glutamine are the most active amino acid acceptors, and that other neutral amino acids also participate in transpeptidation to a significant extent. These in vitro experiments are consistent with a number of other findings which indicate that transpeptidation is a significant physiological function of gamma-glutamyl transpeptidase.  相似文献   

20.
1. Gamma-Glutamyl transpepetidase ((5-glutamyl)-peptide: amino acid 5-glutamyltransferase, EC 2.3.2.2) from human bile has been partially purified using protamine sulphate treatment, DEAE-cellulose chromatography and Sephadex G-200 filtration. The procedure resulted in 150-fold increase in specific acitivity with a 37% yield. 2. The partially purified enzyme showed a single zone of enzyme activity by polyacrylamide gel electrophoresis and eluted in the inner volume of Sephadex G-200. 3. The enzyme had a pH optimum of 8.1 and Km of 1.52 mM using gamma-glutamyl p-nitroanilide as substrate. 4. The effects of cations and different gamma-glutamyl acceptors on the activity of the enzyme are reported. 5. As bile gamma-glutamyl transpeptidase appears to be soluble in the absence of detergents, it is suggested that bile may prove to be a useful source for further studies of the kinetic properties and physiological role of human gamma-glutamyl transpeptidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号