首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most multipopulation epidemic models are of the contact distribution type, in which the locations of successive contacts are chosen independently from appropriate contact distributions. This paper is concerned with an alternative class of models, termed dynamic population epidemic models, in which infectives move among the populations and can infect only within their current population. Both the stochastic and deterministic versions of such models are considered. Their threshold behavior is analyzed in some depth, as are their final outcomes. Velocities of spread of infection are considered when the populations have a spatial structure. A criterion for finding the equivalent contact distribution epidemic for any given dynamic population epidemic is provided, enabling comparisons to be made for the velocities and final outcomes displayed by the two classes of models. The relationship between deterministic and stochastic epidemic models is also discussed briefly.  相似文献   

2.
Stochastic models sometimes behave qualitatively differently from their deterministic analogues. We explore the implications of this in ecosystems that shift suddenly from one state to another. This phenomenon is usually studied through deterministic models with multiple stable equilibria under a single set of conditions, with stability defined through linear stability analysis. However, in stochastic systems, some unstable states can trap stochastic dynamics for long intervals, essentially masquerading as additional stable states. Using a predator–prey model, we demonstrate that this effect is sufficient to make a stochastic system with one stable state exhibit the same characteristics as an analogous system with alternative stable states. Although this result is surprising with respect to how stability is defined by standard analyses, we show that it is well-anticipated by an alternative approach based on the system's “quasi-potential.” Broadly, understanding the risk of sudden state shifts will require a more holistic understanding of stability in stochastic systems.  相似文献   

3.
Summary The relationship between the deterministic stability of nonlinear ecological models and the properties of the stochastic model obtained by adding weak random perturbations is studied. It is shown that the expected escape time for the stochastic model from a bounded region with nonsingular boundary is determined by a Liapunov function for the nonlinear deterministic model. This connection between stochastic and deterministic models brings together various notions of persistence and vulnerability of ecosystems as defined for deterministically perturbed or randomly perturbed models.  相似文献   

4.
The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns.  相似文献   

5.
Population dynamics of rotifers and its consequences for ecotoxicology   总被引:5,自引:4,他引:1  
Udo Halbach 《Hydrobiologia》1984,109(1):79-96
  相似文献   

6.
Reaction networks are commonly used to model the dynamics of populations subject to transformations that follow an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN has immediate implications for any concrete stochastic model based on that DRN, independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if the required number of interacting substrates is present), then reachability properties are equivalent in the two settings. The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to any initial state. Our results consider both the verification of such properties when species are present in a large copy number, and in the general case. The necessary and sufficient conditions obtained involve algebraic conditions on the network reactions which in most cases can be verified using linear programming. Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic and continuous models of reaction networks is discussed.  相似文献   

7.
New stochastic models are developed for the dynamics of a viral infection and an immune response during the early stages of infection. The stochastic models are derived based on the dynamics of deterministic models. The simplest deterministic model is a well-known system of ordinary differential equations which consists of three populations: uninfected cells, actively infected cells, and virus particles. This basic model is extended to include some factors of the immune response related to Human Immunodeficiency Virus-1 (HIV-1) infection. For the deterministic models, the basic reproduction number, R0, is calculated and it is shown that if R0<1, the disease-free equilibrium is locally asymptotically stable and is globally asymptotically stable in some special cases. The new stochastic models are systems of stochastic differential equations (SDEs) and continuous-time Markov chain (CTMC) models that account for the variability in cellular reproduction and death, the infection process, the immune system activation, and viral reproduction. Two viral release strategies are considered: budding and bursting. The CTMC model is used to estimate the probability of virus extinction during the early stages of infection. Numerical simulations are carried out using parameter values applicable to HIV-1 dynamics. The stochastic models provide new insights, distinct from the basic deterministic models. For the case R0>1, the deterministic models predict the viral infection persists in the host. But for the stochastic models, there is a positive probability of viral extinction. It is shown that the probability of a successful invasion depends on the initial viral dose, whether the immune system is activated, and whether the release strategy is bursting or budding.  相似文献   

8.
9.
In this paper, we study the dynamics of the transmission of respiratory syncytial virus (RSV) in the population using stochastic models. The stochastic models are developed introducing stochastic perturbations on the demographic parameter as well as on the transmission rate of the RSV. Numerical simulations of the deterministic and stochastic models are performed in order to understand the effect of fluctuating birth rate and transmission rate of the RSV on the population dynamics. The numerical solutions of stochastic models are calculated using Euler-Maruyama and Milstein schemes, and confidence intervals for stochastic solutions are given using Monte-Carlo method. Analysis of the numerical results reveals that perturbations on the transmission rate are more decisive in the dynamics of RSV than perturbations on demographic parameters. In addition, the stochastic models show the advantage of reproducing more effectively the noisy RSV hospitalization data. It is concluded that these stochastic models are a viable option to provide a realistic modeling of the RSV dynamics on the population.  相似文献   

10.
Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed.  相似文献   

11.
There is increasing recognition that stochasticity involved in gene regulatory processes may help cells enhance the signal or synchronize expression for a group of genes. Thus the validity of the traditional deterministic approach to modeling the foregoing processes cannot be without exception. In this study, we identify a frequently encountered situation, i.e., the biofilm, which has in the past been persistently investigated with intracellular deterministic models in the literature. We show in this paper circumstances in which use of the intracellular deterministic model appears distinctly inappropriate. In Enterococcus faecalis, the horizontal gene transfer of plasmid spreads drug resistance. The induction of conjugation in planktonic and biofilm circumstances is examined here with stochastic as well as deterministic models. The stochastic model is formulated with the Chemical Master Equation (CME) for planktonic cells and Reaction-Diffusion Master Equation (RDME) for biofilm. The results show that although the deterministic model works well for the perfectly-mixed planktonic circumstance, it fails to predict the averaged behavior in the biofilm, a behavior that has come to be known as stochastic focusing. A notable finding from this work is that the interception of antagonistic feedback loops to signaling, accentuates stochastic focusing. Moreover, interestingly, increasing particle number of a control variable could lead to an even larger deviation. Intracellular stochasticity plays an important role in biofilm and we surmise by implications from the model, that cell populations may use it to minimize the influence from environmental fluctuation.  相似文献   

12.
Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomycescerevisiae yeast, and (2) the SOS DNA repair network in Escherichiacoli.  相似文献   

13.
14.
A model is proposed which predicts that the relationship between size and abundance of organisms is logarithmic when certain conditions are met, the most important among these being that the organisms are limited by a single resource. The model is presented in both a deterministic and stochastic form. Examples from experimental and field situations are given, and the model is discussed as to its general relevance and applicability.  相似文献   

15.
Density-independent and density-dependent, stochastic and deterministic, discrete-time, structured models are formulated, analysed and numerically simulated. A special case of the deterministic, density-independent, structured model is the well-known Leslie age-structured model. The stochastic, density-independent model is a multitype branching process. A review of linear, density-independent models is given first, then nonlinear, density-dependent models are discussed. In the linear, density-independent structured models, transitions between states are independent of time and state. Population extinction is determined by the dominant eigenvalue λ of the transition matrix. If λ ≤ 1, then extinction occurs with probability one in the stochastic and deterministic models. However, if λ > 1, then the deterministic model has exponential growth, but in the stochastic model there is a positive probability of extinction which depends on the fixed point of the system of probability generating functions. The linear, density-independent, stochastic model is generalized to a nonlinear, density-dependent one. The dependence on state is in terms of a weighted total population size. It is shown for small initial population sizes that the density-dependent, stochastic model can be approximated by the density-independent, stochastic model and thus, the extinction behavior exhibited by the linear model occurs in the nonlinear model. In the deterministic models there is a unique stable equilibrium. Given the population does not go extinct, it is shown that the stochastic model has a quasi-stationary distribution with mean close to the stable equilibrium, provided the population size is sufficiently large. For small values of the population size, complete extinction can be observed in the simulations. However, the persistence time increases rapidly with the population size. This author received partial support by the National Science Foundation grant # DMS-9626417.  相似文献   

16.
In a companion paper two stochastic models, useful for the initial behaviour of a parasitic infection, were introduced. Now we analyse the long term behaviour. First a law of large numbers is proved which allows us to analyse the deterministic analogues of the stochastic models. The behaviour of the deterministic models is analogous to the stochastic models in that again three basic reproduction ratios are necessary to fully describe the information needed to separate growth from extinction. The existence of stationary solutions is shown in the deterministic models, which can be used as a justification for simulation of quasi-equilibria in the stochastic models. Host-mortality is included in all models. The proofs involve martingale and coupling methods.  相似文献   

17.
Circadian rhythms are ubiquitous in all eukaryotes and some prokaryotes. Several computational models with or without time delays have been developed for circadian rhythms. Exact stochastic simulations have been carried out for several models without time delays, but no exact stochastic simulation has been done for models with delays. In this paper, we proposed a detailed and a reduced stochastic model with delays for circadian rhythms in Drosophila based on two deterministic models of Smolen et al. and employed exact stochastic simulation to simulate circadian oscillations. Our simulations showed that both models can produce sustained oscillations and that the oscillation is robust to noise in the sense that there is very little variability in oscillation period although there are significant random fluctuations in oscillation peeks. Moreover, although average time delays are essential to simulation of oscillation, random changes in time delays within certain range around fixed average time delay cause little variability in the oscillation period. Our simulation results also showed that both models are robust to parameter variations and that oscillation can be entrained by light/dark circles. Our simulations further demonstrated that within a reasonable range around the experimental result, the rates that dclock and per promoters switch back and forth between activated and repressed sites have little impact on oscillation period.  相似文献   

18.
Recent theories of motor control have proposed that the nervous system acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors taking into account the nature and statistics of noise. Detrimental effects of noise are converted into a principled way of controlling movements. Attractive aspects of such theories are their ability to explain not only characteristic features of single motor acts, but also statistical properties of repeated actions. Here, we present a critical analysis of stochastic optimality in motor control which reveals several difficulties with this hypothesis. We show that stochastic control may not be necessary to explain the stochastic nature of motor behavior, and we propose an alternative framework, based on the action of a deterministic controller coupled with an optimal state estimator, which relieves drawbacks of stochastic optimality and appropriately explains movement variability. Action Editor: Frances K. Skinner  相似文献   

19.
‘Deterministic’ models in population dynamics often are really approximations to stochastic models, justified by an appeal to ‘the law of large numbers’. It is proposed to call such models ‘pseudodeterministic’. Four questions are discussed in this article: (1) What errors may be made by equating deterministically predicted values to expectations? (2) When, and in what sense, may numbers be assumed to be large? (3) How large are the variances, coefficients of variations, etc., as assigned to the variables in the stochastic versions of the models? (4) What role may pseudodeterministic models play in empirical research, where problems of statistical reliability arise? As an example, a modified Nicholson-Bailey model of the interaction between insect parasitoids and their hosts is discussed; the modification consists of assigning a random (density-independent) mortality to the parasitoid population. A stochastic version of this model is discussed. The expectation of the final host density is compared with the value computed from the deterministic model. The latter value is systematically lower than the former. The magnitude of the difference depends on parameter values. The variability to be expected with the stochastic model is characterized by the coefficient of variation of the final host density; its dependence on parameter values and initial conditions is discussed. It is concluded that it is worthwhile in practical applications to estimate parasitoid mortality, and that the coefficient of variation in real situations may be far from negligible.  相似文献   

20.
Time-kill curves have frequently been employed to study the antimicrobial effects of antibiotics. The relevance of pharmacodynamic modeling to these investigations has been emphasized in many studies of bactericidal kinetics. Stochastic models are needed that take into account the randomness of the mechanisms of both bacterial growth and bacteria-drug interactions. However, most of the models currently used to describe antibiotic activity against microorganisms are deterministic. In this paper we examine a stochastic differential equation representing a stochastic version of a pharmacodynamic model of bacterial growth undergoing random fluctuations, and derive its solution, mean value and covariance structure. An explicit likelihood function is obtained both when the process is observed continuously over a period of time and when data is sampled at time points, as is the custom in these experimental conditions. Some asymptotic properties of the maximum likelihood estimators for the model parameters are discussed. The model is applied to analyze in vitro time-kill data and to estimate model parameters; the probability of the bacterial population size dropping below some critical threshold is also evaluated. Finally, the relationship between bacterial extinction probability and the pharmacodynamic parameters estimated is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号