首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphids, and the cephalic and labial papillae of Meloidogyne incognita males were examined in detail by electron microscopy. Each amphid basically consists of an amphidial gland, a nerve bundle and an amphidial duct. The gland is a broad microvillous organ with a narrow anterior process, which is closely associated with the amphidial duct. A posterior process of the gland contains secretory organelles and proceeds along the esophagus with the lateral cephalic nerve bundle. The nerve bundle penetrates the broad portion of the gland and, subsequently, individual nerve processes (dendrites) separate from one another, thus forming the sensilla pouch which is enveloped by the gland. Anterior to the pouch, the dendrites converge as they enter and eventually terminate in the amphidial duct. The external opening of the duct is a broad slit which separates the cheek, the outermost part of the lateral lip, from the remainder of the lip region. M. incognita males have six inner labial papillae and four outer cephalic papillae which are each innervated by two and one cilia, respectively. In labial papillae, the cilia appear to terminate at the base of a pore opening, whereas in cephalic papillae each cilium terminates beneath the labial cuticle.  相似文献   

2.
Nematode amphids are a pair of lateral cephalic sense organs, each comprising a group of sensory endings terminating in a cuticle-lined pit. In Syngamus trachea, a parasite of birds, each amphid is surrounded by two non-nervous supporting elements, a large gland cell basally and a smaller supporting cell anteriorly. The amphidial glands display high levels of secretory activity from five to six days postinfection. Secretory material is discharged through the lumen of the sense organ onto host tissue. The ultrastructure of amphids and amphidial glands has been investigated in newly moulted, immature and mature adults to trace the development of glandular activity and its effect on amphid-amphidial gland relationships. In newly moulted adults, the glands have very low levels of secretory activity and appear to act only as supporting cells to the amphids. As secretory activity increases, the gland cell membrane surrounding the sensory endings is elaborated into a reticulum which probably forms the secretory surface. In mature adults the amphid pit is swollen and filled with secretion; the sensory endings are relegated to the periphery of the lumen. It is suggested that amphidial glands develop from typical supporting cells, but acquire a new role possibly associated with parasite attachment.  相似文献   

3.
Cephalic sense organs of Heterodera glycines males were examined in detail by electron microscopy. Each amphid basically consists of an amphidial gland, a nerve bundle, and an amphidial duct. The amphidial gland consists of a microvillous region, and laterally is closely associated with a large secretory cell. The nerve bundle penetrates the microvillous region, and further anteriorly individual nerve processes (dendrites) separate from one another, thus forming a sensilla pouch which is enveloped by the microvillous region of the gland. Anterior to the pouch, the cilia-like dendrites converge as they enter and eventually terminate in the amphidial duct. Heterodera glvcines males have the innervation basis for a full complement of sixteen papillae, although surface manifestations are present for only six minute inner labial papillae. In addition, four outer labial and four cephalic receptors terminate beneath the surface, and another two dendrite pairs end further posteriorly beneath the basal plate of the cephalic framework. Papillary receptors which terminate beneath the surface are probably mechanoreceptive, whereas inner labial papillae have pore-like openings to the exterior and may be chemoreceptive. Amphids and papillae of H. glycines are fundamentally similar to those of Meloidogyne incognita, although certain striking differences exist.  相似文献   

4.
5.
The sensory neuronal ultrastructure of the amphids of the infective larva (L3) of Haemonchus contortus was analyzed, compared, and contrasted with that of the first-stage larva (L1). As in L1, each amphid of the L3 is innervated by 12 neurons. Thirteen ciliated dendritic processes of 10 neurons, 3 with double processes, lie in each amphidial channel. The dendritic process of each finger cell neuron ends in a large number of digitiform projections or "fingers," many more than in the L1. Processes of another pair of specialized neurons, probable homologs of wing cells in Caenorhabditis elegans, extend into the extreme anterior tip of the larva; they are much longer than those in L1. In L3, the neurons exit through the posterior wall of the amphidial chamber individually rather than in a bundle, as in L1. Cell constancy between L1 and L3 was confirmed, and the neurons were individually identified. Significant neuron-specific variations, presumably related to functional differences between the 2 stages were observed. In contrast, species-specific differences are surprisingly small. Haemonchus contortus is closely related to hookworms and has amphidial structure nearly identical to that in hookworms and similar to that in C. elegans, to which it is also closely related.  相似文献   

6.
Guerrero J  Freeman AS 《Parassitologia》2004,46(1-2):237-240
The development of anthelmintic resistance by nematode parasites is a growing problem for veterinarians and producers. The intensive use of the macrocyclic lactones for the treatment of a variety of parasitic diseases has hastened the development of resistance to this family of parasiticides among sheep, goats and cattle. As a result, resistance to ivermectin, moxidectin and doramectin by Haemonchus contortus has been documented throughout the world. While the exact sites of action of the macrocyclic lactones remain incompletely known, a critical point of entry for these drugs may be the terminally exposed sensory major neurons located in the cephalic end of the worms. These neurons, called amphidial neurons, are located in a pair of channels, the amphids, on either side of the pharynx and are exposed to the external environment via pores at the anterior tip of the worm. Through these neurons, important chemical and thermal cues are gathered by the parasite. Examination of serial electron micrographs of ivermectin-susceptible and ivermectin-resistant H. contortus allows for comparison of neuronal structure, arrangement of neurons within the amphidial channel, and distance of the tip of the dendritic processes to the amphidial pore. The latter of these characteristics provides a useful means by which to compare the association between the neurons and the external environment of the worm. Comparison of parental laboratory strains of ivermectin-susceptible H. contortus with related selected, ivermectin-resistant strains and with a wild-type ivermectin-susceptible field strain of H. contortus from Louisiana reveals that the ivermectin-resistant worms examined have markedly shorter sensory cilia than their ivermectin-susceptible parental counterparts. Additionally, the amphidial neurons of ivermectin-resistant worms are characterized by generalized degeneration and loss of detail, whereas other neurons outside of the channels, such as the labial and cephalic neurons, are normal in structure. Similar degeneration was also observed in field strains of doramectin-resistant H. contortus collected from a New Jersey alpaca heard. These findings raise a number of questions regarding the relationship between amphidial structure and macrocyclic lactone resistance as well as the role of amphids as a means of entry for these molecules. While shortened amphidial sensilla are associated with ivermectin resistance, it remains unclear if such a structural modification facilitates survival of nematodes exposed to the macrocyclic lactones.  相似文献   

7.
The occurrence and distribution of several lectin binding sites on the outer surfaces of eggs, preparasitic second-stage juveniles (J2), parasitic second-stage juveniles (PJ2), females, and males of two tylenchid nematodes, Anguina tritici and Meloidogyne incognita race 3, were compared. In both species, a greater variety of lectins bound to the eggs than to other life stages; lectin binding to eggs was also more intense than it was to other life stages. Species-specific differences also occurred. More lectins bound to the amphids or amphidial secretions of M. incognita J2 than to the amphids or amphidial secretions of A. tritici J2. Lectins also bound to the amphids or amphidial secretions of adult male and female A. tritici, but binding to the cuticle occurred only at the head and tail and was not consistent in all specimens. Canavalia ensiformis and Ulex europaeus lectins bound specifically to the outer cuticle of M. incognita. Several other lectins bound nonspecifically. Oxidation of the cuticle with periodate under mild conditions, as well as pretreatment of the nematodes with lipase, markedly increased the binding of lectins to the cuticle of A. tritici J2 but not, in most cases, to M. incognita J2 or eggs of either species.  相似文献   

8.
The ultrastructure of the amphidial, oesophageal and excretory glands of N. americanus is described. There are two amphidial glands, and each is attached to a lateral hypodermal cord. Anteriorly the glands become associated with the amphidial sense organs. The amphidial glands synthesize complex secretion granules which appear to release their contents into the sense organ. Secretions thus pass over the amphidial cilia and exit via the amphidial pore. It is suggested that the secretory activity of these glands is under direct nervous control. There are three oesophageal glands, and each synthesizes dense secretion granules. The secretions of the oesophageal glands are released into the lumen of the oesophagus and into the buccal capsule. The two excretory glands are ventral in position and connected to the tubular excretory system. These glands synthesize secretion granules of varying density. Secretions from the excretory glands may exit via the excretory pore, or pass back into the tubular excretory system, or both.  相似文献   

9.
Lectin binding sites on the surface of Meloidogyne incognita Races 1, 2, 3, and 4; M. javanica; M. arenaria Races 1 and 2; and M. hapla Races A and B were determined with lectins conjugated to fluorescein isothiocyanate or colloidal gold. The amphidial exudate, which was demonstrated histochemically to contain carbohydrate, was the principal binding site. Some lectins also bound to the external cuticular surface. Species and race specific binding patterns were observed for both amphidial and cuticular binding sites.  相似文献   

10.
The cement gland of Rhodnius prolixus is an epidermally derived tubular gland consisting of a distal synthetic region and a proximal muscular duct region. The synthetic region consists of numerous secretory units joined to a central chitinous duct via cuticular ductules. Proteinaceous secretion, synthesized by the goblet-shaped secretory cell, passes through the delicate cuticular lattice of a ductule-end apparatus and out through fine ductules to the central duct. Secretory cells are rich in rough endoplasmic reticulum and mitochondria. Light microscopy, SEM and TEM reveal the delicate lattice-like end apparatus structure, its formation and relationship to the secretory cell. The secretory cell associates via septate junctions with a tubular ductule cell that encloses a cuticle-lined ductule by forming an elaborate septate junction with itself. The ductules are continuous with the cuticle lining of the large central duct that conveys secretion to the proximal area. The proximal muscular duct has a corrugated cuticular lining, a thin epithelium rich in microtubules and thick longitudinal, striated muscles which contract during oviposition, forcing the secretion out. Histochemistry and electrophoresis reveal the secretion as proteinaceous.  相似文献   

11.
The principal salivary gland of the planthopper, Peregrinus maidis (Ashmead) (Homoptera : Delphacidae), comprises 8 acini of only 6 ultrastructurally different acinar types. In these acini, secretory cells contain elongated vacuoles partly lined by microvilli and by microtubule bundles. These vacuoles are apparently connected with extracellular canaliculi deeply invaginated into secretory cells. Canaliculi of each acinus lead to a ductule lumen, which is lined with spiral cuticular intima, surrounded by duct cells. Striated muscle fibers, supplied with small nerve axons and tracheoles, are found in various acini of the principal gland, usually around secretory and duct cells.In the accessory salivary gland, the 2 large secretory cells contain no elongated vacuoles or canaliculi invaginations. However, in their central region, apically, these cells border a large microvilli-lined canal with its own canal cells. This canal is apparently connected with the cuticle-lined accessory duct, formed by duct cells. Nerve axons, but no muscle fibers, are found in the accessory gland and its duct. It is suggested that the system for transporting secretory material within acini of the principal gland, is basically different from that within the accessory gland.  相似文献   

12.
In this review, Francis Ashton and Gerhard Schad examine the ultrastructure of the amphids of several animal parasitic nematodes. These structures are the main chemosensory organs of these worms and probably play an important role in host-finding behavior and the control of development. Reconstructions made from serial micrographs of the neurons in the amphids of the threadworm Strongyloides stercoralis are shown. These stereo images permit three-dimensional visualization of these complex sense organs. The association between each amphidial neuron and its cell body has not been made previously for a parasitic nematode; however, this has been done for the free-living nematode Caenorhabditis elegans, which served as a model for these studies. Recognition of the cell bodies will provide a point of departure for laser microbeam ablation studies to determine individual neuronal function.  相似文献   

13.
Bhopale, V. M., Kupprion, E. K., Ashton, F. T., Boston, R., and Schad, G. A. 2001. Ancylostoma caninum: The finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Experimental Parasitology 97, 70-76. In the amphids (anteriorly positioned, paired sensilla) of the free-living nematode Caenorhabditis elegans, the so-called finger cells (AFD), a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors. A similar neuron pair in the amphids of the parasitic nematode Haemonchus contortus is also known to be thermoreceptive. The hookworm of dogs, Ancylostoma caninum, has apparent structural homologs of finger cells in its amphids. The neuroanatomy of the amphids of A. caninum and H. contortus is strikingly similar, and the amphidial cell bodies in the lateral ganglia of the latter nematode have been identified and mapped. When the lateral ganglia of first-stage larvae (L1) of A. caninum are examined with differential interference contrast microscopy, positional homologs of the recognized amphidial cell bodies in the lateral ganglia of H. contortus L1 are readily identified in A. caninum. The amphidial neurons in A. caninum were consequently given the same names as those of their apparent homologs in H. contortus. It was hypothesized that the finger cell neurons (AFD) might mediate thermotaxis by the skin-penetrating infective larvae (L3) of A. caninum. Laser microbeam ablation experiments with A. caninum were conducted, using the H. contortus L1 neuronal map as a guide. A. caninum L1 were anesthetized and the paired AFD class neurons were ablated. The larvae were then cultured to L3 and assayed for thermotaxis on a thermal gradient. L3 with ablated AFD-class neuron pairs showed significantly reduced thermotaxis compared to control groups. The thermoreceptive function of the AFD-class neurons associates this neuron pair with the host-finding process of the A. caninum infective larva and shows functional homology with the neurons of class AFD in C. elegans and in H. contortus.  相似文献   

14.
Utilizing a Concanavalin A (Con A)-hemocyanin conjugate, the majority of cuticular Con A binding sites were shown to be localized on the head region of Caenorhabclitis elegans and Meloidogyne incognita. Secretions which apparently emanated from the amphids and inner labial papillae did not label.  相似文献   

15.
Summary We have investigated the actin content and ultrastructure of two kinds of presumed sensory projections on the lip epidermis of beroid ctenophores. Transmission electron microscopy showed that conical pegs contain a large bundle of densely packed, parallel microfilaments. Rhodamine-phalloidin brightly stained the pegs, confirming that they contain filamentous actin. Epidermal cells with actin pegs also bear a single long cilium with an onion-root structure, previously described as arising from a different type of cell. The actin peg and onion-root cilium project side-by-side, defining a polarized axis of the cell which is shared by neighboring cells. The onion-root body is surrounded by a flattened membranes sac which lies immediately below the plasma membrane. The perimeter of the membrane sac is encircled by aggregates of dense material. An extra layer of dense material is found along the side of the membrane sac facing the peg; this material often makes direct contact with the adjacent actin filament bundle. Cells with actin pegs and onion-root cilia synapse onto adjacent neurites and secretory gland cells, indicating that one or both types of projections are sensory elements. Since the feeding responses of beroids are reported to depend on chemical and tactile stimuli to the lips, the cells bearing pegs and cilia may function as both mechanoreceptors and chemoreceptors, that is, as double sensory receptors.  相似文献   

16.
The infective larvae (L3i) of the nematode parasite of swine, Oesophagostomum dentatum, are passively ingested by their hosts. The L3i exhibit certain behaviors that are probably selected to increase the likelihood of ingestion, by strategic positioning in the environment. The larvae show positive geotactic behavior and respond to temperature variations in their environment, as shown by their behavior on a thermal gradient. To investigate neuronal control of this behavior, we initiated a study of the structure of the amphidial neurons of this parasite. The same number and types of neuronal dendritic processes are found in the amphids of the O. dentatum L3i as in those of its close relatives Haemonchus contortus and Ancylostoma caninum. Well-developed dendritic processes of wing cells are located in the amphidial sheath cells, these being similar to wing cells AWA in the free-living nematode Caenorhabditis elegans but actually more extensive. Similar to its close relatives just mentioned, and C. elegans as well, O. dentatum L3i has prominent finger cell processes, the finger cell neurons being the thermoreceptors in all 3 of the preceding species. However, unlike the arrangement seen in H. contortus and A. caninum, where the microvilli-like "fingers" of these neurons lie dorsal to the amphidial channel and occupy a very large portion (>50%) of the anterior end of the larva, the dendritic process of the finger cells in O. dentatum extends into unusual linguiform projections that, in turn, extend into the lumen of the mouth tube, a complex structural arrangement that has not been described for any other nematode.  相似文献   

17.
Summary The thoracic salivary gland of the worker honeybee was investigated by dissection, light microscopy, scanning electron microscopy, and transmission electron microscopy. The glands are paired and each lateral half consists of two parts, a smaller external and a larger internal lobe. The lobes are composed of densely packed secretory tubes and ducts, the tubes of which often show ramifications. A reservoir is packed within the anterior medial part of the gland. The secretory tubes are composed of two types of cells, secretory cells, which are most frequent, and parietal cells. Secretory cells are characterized by a basal labyrinth, abundant rough endoplasmic reticulum, dark secretory vesicles, light vesicles of different sizes, and apical microvilli. Parietal cells are smaller and have a characteristically lobed nucleus and no secretory vesicles. Between the cells there are intercellular canaliculi. In the center of each tube there is an extracellular space with a central cuticular channel. The abundance of rough endoplasmic reticulum and the rare occurrence of smooth endoplasmic reticulum implies a saliva with proteins but rarely with pheromones. Between the secretory tubes there are frequently neuronal profiles which are partly in contact with the secretory cells. Thus a nervous control of this gland is, in contrast to previous investigations, clearly demonstrated. The axonal endings contain dark neurosecretory vesicles as well as light synaptic vesicles. Large parts of the glands are surrounded by a thin tissue sheath which has a smooth surface towards the secretory tubes and shows irregular protrusions towards the outer side. This sheath is considered to be a tracheal air sac, and due to its large extension is probably of importance for the hemolymph flow in the thorax.  相似文献   

18.
On the antennal tip of Eurypauropus ornatus are 3 threadlike sensilla—the flagella, and a single spheroid sensillum—the globulus. Each of the 3 flagella is innervated by 2 groups of sensory cells. One group contains 4 cells, the other, 5. All cells of the “four group” and 3 of the “five group” are comprised of single cilia and unbranched dendrites which extend along the lumen of the flagellum. Two cells of the “five group” have double cilia and pairs of unbranched dendrites. One pair also enters the flagellum and the other pair terminates beneath the flagellar base to form a concentric array of lamellae. No pores are present in the cuticular wall. Eight sensory cells innervate the globulus. They are arranged in 3 groups, one triplet and 2 pairs, in addition to a single cell. The single cell contains a pair of cilia whose unbranched dendrites differentiate into tubular bodies that are inserted into the base of the globulus. Each of the other 7 sensory cells has a single cilium. Their unbranched dendrites penetrate into the globulus in 3 groups as described for the sensory cells. The dendrites in each group terminate in an individual pore channel at the globulus tip and completely fuse with the electron-dense material that plugs the pore channel. Based on structural similarities to sensilla having known functions, it is probable that the flagella and the globulus are chemoreceptors, the former responding to odors, the latter sensitive to substances in aqueous solution.  相似文献   

19.
The ultrastructure of the microfilaria of Brugia, Nematoda: Filarioidea   总被引:2,自引:0,他引:2  
The microfilaria of Brugia pahangi is a differentiated nematode larva. The basic nematode body plan is present showing cuticle, hypodermis, dorsal, ventral, and lateral cords, muscle cells, longitudinal nerves, papillary nerves, amphids and phasmids. Secretory granules are present in ganglionic cells and in axons in the nerve ring. There is no differentiated pseudocoelom. There is only a single row of muscle cells between each pair of cords. The excretory cell complex is similar in structure to the hypodermal gland cells of other nematodes. The alimentary canal of the microfilaria is very much modified. The pharyngeal cells are attached to the pharyngeal thread which is circular in cross section and there is no pharyngeal musculature. The intestine is represented by the solid mass of the inner body within paired intestinal cells. The intestine is separated from the rectum. The three rectal cells form a syncytium of villi in the anal vesicle. The structure in Brugia is related to the ultrastructure of other microfilariae and it is concluded that the evolution of the modifications of the basic larval structure is due to the small size of these nematodes as a consequence of their adaptation to a parasitic mode of life in the capillaries of the vertebrate host with transmission through an intermediate arthropod vector.  相似文献   

20.
Three new species of Etamphidelus are described from Orange Bay, Hoste Island, Chile. All three are distinguished from previously described species by their numerous longitudinal cuticular ridges. E. acucephalus n. sp. is further distinguished by its extremely narrowed anterior body region and posteriorly situated amphids. E. fueguensis n. sp. is distinguished from E. acucephalus by its anteriorly located amphideal fovea, fewer cuticular ridges, smaller V-an/tail ratio and presence of males. E. yamani n. sp. is more similar to E. fueguensis n. sp. differing from it by a wider head end, more posteriorly located excretory pore, longer V-an/tail ratio, more numerous cuticular ridges and smaller spermatozoa. E. puccinelliae (Lorenzen, 1966) Andrássy, 1977 is transferred to Paramphidelus puccinelliae (Lorenzen, 1966) n. comb. The generic diagnosis of Etamphidelus is amended, and a key to species is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号