首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the endogenous pro-inflammatory phospholipid, platelet-activating factor (Paf), to increase the susceptibility of the rat gastric mucosa to damage induced by a topical irritant was studied in an gastric chamber model. Intravenous infusion of Paf (1–100 ng/kg/min) for 5 minutes dose-dependently increased the haemorrhagic damage induced by topically applied 20% ethanol. The pro-ulcerogenic actions of Paf were not solely due to its hypotensive actions, since a significant augmentation of damage was observed with doses of Paf (1 ng/kg/min) which did not affect systemic arterial blood pressure. These pro-ulcerogenic actions were not shared by the structurally similar precursor/breakdown product, lyso-Paf (100 ng/kg/min). Paf (100 ng/kg/min) also significantly increased the gastric damage induced by topically applied 2 mM sodium taurocholate. Infusion of Paf for 5 minutes without topical irritation only caused significant gastric damage at the highest dose tested (100 ng/kg/min). Histologically, this damage was characterized by extensive vasocongestion, deep mucosal necrosis, swelling of the gastric glands and accumulations of neutrophils in the mucosal and submucosal venules. Paf is thus a potent pro-ulcerogenic agent in the gastric mucosa. The endogenous release of Paf during septic shock or inflammatory diseases of the gastrointestinal tract could contribute to the mucosal injury associated with these disorders.  相似文献   

2.
The pro-ulcerogenic actions of the thromboxane mimetic, U-46619 on the rat gastric mucosa have been investigated, utilizing a novel technique which allows administration directly into the left gastric artery. Local intra-arterial infusion of U-46619 (100-500 ng/kg/min for 10 min) induced dose-dependent macroscopic damage in both the corpus and antral regions, characterized as vasocongestion, disruption and haemorrhage, with deep penetrating ulcers in the antral mucosa. Vascular congestion, epithelial cell and glandular disruption was observed histologically in both corpus and antral regions. Local intra-arterial infusion of lower doses of U-46619 (25-100 ng/kg/min) significantly disrupted the mucosa in the presence of 10% ethanol in a concentration which itself did not induce macroscopic damage. The damaging actions of U-46619 were substantially reduced by pretreatment with the thromboxane-receptor antagonist, BM 13,177 (5mg/kg i.v.) or 16,16-dimethyl PGE2 (5 micrograms/kg s.c.). These findings support the role of endogenous thromboxane A2 as a local mediator of gastric injury.  相似文献   

3.
We have tested the ability of zinc acexamate (ZAC) to prevent platelet-activating-factor (Paf) induced gastric damage in rats. Lesions were characterized by a vascular congestion affecting the entire mucosa, oedema, haemorrhage and frequent necrosis of the more superficial areas. The gastric damage appearing after Paf was accompanied by degranulation of gastric mast cells. Leukocytes were often seen at the submucosal level. Oral pretreatment with ZAC reduced in a dose-dependent manner both gastric damage and mast cell degranulation observed after Paf. ZAC administered orally at a dose of 100 mg kg-1 statistically inhibited (p less than 0.01) gastric damage and mast cell degranulation. ZAC did not affect the hypotension induced by Paf confirming that gastric damage and hypotension appearing in rats after Paf administration are two independent phenomena. The present findings indicate that the inhibitory effect of ZAC upon gastric lesions induced by Paf may be related to the different protective actions exhibited by this zinc compound in a wide variety of experimental models of gastric ulcer.  相似文献   

4.
《Journal of Physiology》1996,90(2):63-73
The effect of cysteamine on gastric blood flow and on the indomethacin-induced gastric mucosal damage was studied. In anesthetized rats, cysteamine (280 mg/kg) given subcutaneously (sc) decreased gastric blood flow measured by the laser Doppler flowmetry technique. In contrast, cysteamine (1–60 mg/ml) applied topically to the serosal surface of the stomach evoked a concentration-dependent and long-lasting increase in gastric blood flow. At 60 mg/ml, cysteamine increased blood flow by 166.8 ± 26.1% of predrug control value. Pretreatment with indomethacin (20 mg/kg, sc), intravenous (iv) atropine (1 mg/kg), propranolol (1 mg/kg, iv), combined H1 and H2-blockade or bilateral cervical vagotomy alone or combined with iv guanethidine (8 mg/kg), or pretreatment with the capsaicin analogue resiniferatoxin did not reduce the vasodilator response to cysteamine. The vasodilator response to topical capsaicin, was not reduced after sc cysteamine (280 mg/kg) pretreatment. In conscious pylorus-ligated rats, sc cysteamine (100 or 280 mg/kg) given simultaneously with indomethacin inhibited gastric acid output but had variable effects on the indomethacin-induced gastric mucosal damage. Cysteamine (100 or 280 mg/kg) administered sc 4 h prior to indomethacin enhanced gastric injury by sc indomethacin, but did not prevent the gastroprotective action of capsaicin. In contrast, orally administered cysteamine (60 mg/ml) reduced gastric injury induced by sc indomethacin plus intragastric HCl. These data provide the first evidence for the effect of cysteamine on gastric microcirculation in the rat and suggest a direct vasodilator effect for topical cysteamine. The microvascular effects of cysteamine are largely responsible for the different effects of this agent on experimental gastric injury.  相似文献   

5.
The mechanism of the protection by human epidermal growth factor (hEGF) against the gastric mucosal lesions induced by acidified ethanol was studied in rats. At different times following the subcutaneous administration of hEGF (30 micrograms/kg), intragastric acidified ethanol (EtOH: 0.125 M HC1 = 50:50 v/v%) was administered to induce an experimental gastric mucosal lesion. Mean length of the lesion in the gastric mucosa was used as a lesion index. Extravasation of intravenously injected Evans blue into the gastric wall and gastric contents was used as an indicator of vascular permeability. Pretreatment with hEGF decreased both the gastric mucosal lesions and the increase of vascular permeability caused by acidified ethanol with similar time profiles relative to pretreatment with hEGF. Maximal protective actions of hEGF occurred about 10 to 30 min after the observed peak plasma concentration of hEGF. Indomethacin and N-ethylmaleimide, but not iodoacetamide, blocked the protective action of hEGF, indicating that endogenous prostaglandins and/or sulfhydryls may participate in the protective action of hEGF. The content of endogenous nonprotein sulfhydryls in the gastric mucosa decreased markedly after acidified ethanol. However, pretreated hEGF did not restore the sulfhydryl contents. Thus, it seemed that endogenous prostaglandins, but not sulfhydryls, are the probable mediators for protection against gastric mucosal injury caused by acidified ethanol.  相似文献   

6.
The role that nitric oxide, an endothelium-derived relaxing factor, may play in the regulation of gastric mucosal defence was investigated by assessing the potential protective actions of this factor against the damage caused by ethanol in an ex vivo chamber preparation of the rat stomach. Topical application of glyceryl trinitrate and sodium nitroprusside, which have been shown to release nitric oxide, markedly reduced the area of 70% ethanol-induced hemorrhagic damage. Topical application of a 0.01% solution of authentic nitric oxide also significantly reduced the severity of mucosal damage. Pretreatment with indomethacin precluded the involvement of endogenous prostaglandins in the protective effects of these agents. The protective effects of NO were transient, since a delay of 5 minutes between NO administration and ethanol administration resulted in a complete loss of the protective activity. The protection against ethanol afforded by 10 micrograms/ml nitroprusside could be completely reversed by intravenous infusion of either 1% methylene blue or 1 mM hemoglobin, both of which inhibit vasodilation induced by nitric oxide. Intravenous infusion of 1% methylene blue significantly increased the susceptibility of the mucosa to damage induced by topical 20% ethanol. These results indicate that ethanol-induced gastric damage can be significantly reduced by nitric oxide. The mechanisms underlying the protective actions of nitric oxide are unclear, but may be related to its vasodilator or anti-aggregatory properties.  相似文献   

7.
The effects of glucocorticoid deficiency with or without corticosterone replacement on susceptibility to gastric mucosal injury by various ulcerogenic stimuli have been evaluated in rats. Gastric erosions were induced in male rats by stimuli of different modalities and intensities: 20% ethanol (po), aspirin (300 mg/kg, ip), acidified aspirin (40 mM, po) and 100% acetic acid (applied to gastric serosa). Glucocorticoid supply was decreased by adrenalectomy or by delayed inhibitory action after a single pharmacological dose of cortisol (300 mg/kg, ip) injected one week before the onset of ulcerogenic stimulus. Corticosterone for replacement (4 mg/kg, sc) was injected in rats with glucocorticoid deficiency 15 min before the onset of ulcerogenic stimulus. Plasma corticosterone levels were measured by fluorometry. Gastric erosions were quantitated by measuring the area of damage. Ulcerogenic stimuli induced both plasma corticosterone rise and gastric mucosal injury. The area of mucosal damages induced various stimuli ranged from small to extensive. Glucocorticoid deficiency significantly potentiated an ulcerogenic action of every ulcerogenic stimulus. Replacing corticosterone prevented or significantly decreased erosion-potentiating effect of glucocorticoid deficiency. These results show that endogenous glucocorticoids released during ulcerogenic influences help gastric mucosa to resist a harmful action of both weak and strong ulcerogenic stimuli.  相似文献   

8.
Lam EK  Tai EK  Koo MW  Wong HP  Wu WK  Yu L  So WH  Woo PC  Cho CH 《Life sciences》2007,80(23):2128-2136
The gastric mucosa is frequently exposed to different exogenous and endogenous ulcerative agents. Alcoholism is one of the risk factors for the development of mucosal damage in the stomach. This study aimed to assess if a probiotic strain Lactobacillus rhamnosus GG (LGG) is capable of protecting the gastric mucosa from acute damage induced by intragastric administration of ethanol. Pre-treatment of rats with LGG at 10(9) cfu/ml twice daily for three consecutive days markedly reduced ethanol-induced mucosal lesion area by 45%. LGG pre-treatment also significantly increased the basal mucosal prostaglandin E(2) (PGE(2)) level. In addition, LGG attenuated the suppressive actions of ethanol on mucus-secreting layer and transmucosal resistance and reduced cellular apoptosis in the gastric mucosa. It is suggested that the protective action of LGG on ethanol-induced gastric mucosal lesions is likely attributed to the up-regulation of PGE(2), which could stimulate the mucus secretion and increase the transmucosal resistance in the gastric mucosa. All these would protect mucosal cells from apoptosis in the stomach.  相似文献   

9.
The concept of cytoprotection has been applied to many tissues afforded protection by drugs or endogenous chemicals against organelle, cyto- or histopathologic damage. We review here the "organoprotection" by lidocaine in rats and dogs as appraised by in vitro, ex vivo, and in vivo experiments with the stomach and heart, and as revealed at organelle to organ functional levels. Gastric mucosal lesions induced by 80% ethanol with 100 mM HCl on the ex vivo rat stomach were significantly reduced by lidocaine (2.2-4.4 mg/kg bolus followed by 66-132 micrograms/kg/min i. v. infusion). In anesthetized dogs with gastric corporeal lesions induced by increased gastric intraluminal pressure (50 mm Hg, 2.5 hrs), lidocaine (2.2 mg/kg bolus plus 66 micrograms/kg/min infusion) significantly reduced lesion severity. In the isolated rat heart, reperfusion after a 60 min period of ischemia induced localized cardiac mitochondrial swelling and disruption in ventricular apices which was greatly reduced if hearts were pretreated (15 min perfusion with lidocaine). In intact rats subjected to hemorrhagic shock, lidocaine pretreatment also facilitated shock resuscitation and reduced ultrastructural damage. In these diverse experiments, lidocaine organoprotection was likely mediated in part through reduction of ischemia induced organelle membrane damage and through reduction of reperfusion-induced superoxide and other oxygen-derived free radical related damage.  相似文献   

10.
Park JS  Choi MA  Kim BS  Han IS  Kurata T  Yu R 《Life sciences》2000,67(25):3087-3093
In this study, we investigated the protective effects of capsaicin on gastric mucosal oxidative damage induced by ethanol. Sprague Dawley rats intragastrically received 0.5-10 mg/kg, BW capsaicin or vehicle; 30 min later gastric lesions were induced by intragastric administration of absolute ethanol. Lipid peroxidation was estimated by measuring thiobarbituric acid reactive substances in gastric mucosa. Myeloperoxidase activity, a marker enzyme of polymorphonuclear leukocytes for tissue inflammation, was also measured in the gastric mucosa. The expression level of cyclooxygenase-2, which increases in inflammatory region, was determined by Western blot analysis. Capsaicin significantly suppressed gastric haemorrhagic erosions induced by ethanol. Capsaicin inhibited lipid peroxidation and myeloperoxidase activity in ethanol-induced gastric mucosal lesion in a dose-dependent manner. Capsaicin also inhibited the expression of cyclooxygenase-2 in the gastric mucosal lesion. The gastroprotective activity of capsaicin on the ethanol-induced oxidative damage may be important for chemoprevention.  相似文献   

11.
The effects of PGE2 and its stable analogue, 16,16 dimethyl PGE2 (dmPGE2) were investigated on ethanol-induced gastric mucosal haemorrhagic lesions and leukotriene formation in the rat. Exposure of the rat gastric mucosa to ethanol in-vivo, produced a concentration-related increase in the mucosal formation of leukotriene B4 (LTB4) which was correlated with macroscopically-apparent haemorrhagic damage to the mucosa. Challenge with absolute ethanol likewise enhanced the mucosal formation of LTC4 whereas the mucosal formation of 6-keto-PGF1 alpha was unaffected. Challenge of the rat gastric mucosa in vitro with ethanol induced a concentration-dependent increase in the formation of LTB4 and LTC4, but not 6-keto PGF1 alpha. Pretreatment with PGE2 (200-500 micrograms/kg p.o.) prevented the haemorrhagic mucosal damage induced by oral administration of absolute ethanol but not the increased formation of leukotrienes by the mucosa. In contrast, pretreatment with a high dose of dmPGE2 (20 micrograms/kg p.o.) prevented both the gastric mucosal lesions and the increase mucosal leukotriene formation. The differences in the effects of these prostaglandins may be related to the nature or degree of protection of the gastric mucosa. Thus, high doses of dmPGE2 but not PGE2 may protect the cells close to the luminal surface of the mucosa and hence reduce the stimulation of leukotriene synthesis by these cells.  相似文献   

12.
The present study histologically investigated the efficacy of pretreating rat gastric mucosa with the mild irritants, 10% and 25% ethanol (EtOH), against the known damaging effects of 100% EtOH. Fasted rats received 1 ml of either water, 10% EtOH, or 25% EtOH by orogastric intubation. Fifteen minutes later, a portion of these animals was sacrificed and tissue samples of the oxyntic region of the stomach were excised and processed for quantitative histologic analysis. Remaining animals received a 1 ml oral bolus of the necrotizing agent, 100% EtOH. Five minutes later, these animals were sacrificed and tissues were prepared in a like manner. In a separate series of experiments, the aforementioned protocols were repeated, except that all animals received the prostaglandin synthetase inhibitor, indomethacin (5.0 mg/kg intraperitoneally), 30 min before administration of the mild irritant. Microscopically, the administration of water or 10% EtOH alone caused a small and comparable amount of superficial injury to the gastric mucosa. Moreover, both substances failed to induce protection in stomachs subsequently exposed to 100% EtOH. Indomethacin pretreatment did not significantly alter any of these findings. In marked contrast, 25% EtOH alone elicited a substantial degree of superficial damage to the gastric mucosa. Nevertheless it significantly reduced the depth of injury in animals subsequently challenged by 100% EtOH. Indomethacin failed to aggravate the effects of 25% EtOH alone, but partially inhibited the protective effect of this mild irritant against 100% EtOH induced damage. Our findings indicate that adaptive cytoprotection is a real phenomenon that can be demonstrated microscopically. Such protection is limited primarily to the deep mucosal layers (i.e. gastric glands), appears in part to be prostaglandin mediated and seems to require the generation of moderate surface cell damage (as occurred with 25% EtOH, but not 10% EtOH) to induce its initiation.  相似文献   

13.
The aim of this study was to investigate the effects of peripherally injected glucagon like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and the mechanisms included in the effect. Absolute ethanol was administered through an orogastric cannula right after the injection of GLP-1 (1, 10, 100, 1000 or 10,000 ng/kg; i.p.). The rats were decapitated an hour later, the stomachs removed and the gastric mucosal damage scored. 1000 ng GLP-1 inhibited gastric mucosal damage by 45% and 10,000 ng GLP-1 by 60%. The specific receptor antagonist exendin-(9-39) (2500 ng/kg; i.p.), calcitonin gene related peptide (CGRP) receptor antagonist CGRP-(8-37) (10 microg/kg; i.p.), nitric oxide (NO) synthase inhibitor l-NAME (30 mg/kg; s.c.) and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) inhibited the preventive effect of GLP-1 on ethanol-induced gastric mucosal damage. GLP-1 also prevented the decrease in gastric mucosal blood flow caused by ethanol when administered at gastroprotective doses (1000 and 10,000 ng/kg; i.p.). In conclusion, GLP-1 administered peripherally prevents the gastric mucosal damage caused by ethanol in rats. CGRP, NO, prostaglandin and gastric mucosal blood flow are thought to play a role in this effect, mediated through receptors specific to GLP-1.  相似文献   

14.
The present study investigated the protective effect of L-citrulline on gastric mucosal injury induced by ischemia-reperfusion (IR) in rats. Under anesthesia, the celiac artery was clamped for 30 min, and then the clamp was removed for 60 min reperfusion. Sixty minutes before ischemia, L-citrulline was administered intragastrically at doses of 300, 600, and 900 mg/kg. After the experiment, the stomachs were removed for biochemical and histological examinations. Pretreatment with L-citrulline (300, 600, and 900 mg/kg) significantly ameliorated the gastric damage caused by IR. Moreover, L-citrulline prevented the production of lipid peroxidation and inhibited the increase of myeloperoxidase activity. The elevation in total nitric oxide synthase (NOS) activity, inducible NOS activity, and inducible NOS protein expression as well as the decrease in constitutive NOS activity and gastric mucus level in the gastric mucosa induced by IR were significantly prevented. However, the protective effect mediated by L-citrulline was significantly antagonized by coadministration of L-nitroarginine methyl ester (10 mg/kg, s.c.). These results suggest that part of the mechanism of gastric protection by L-citrulline might be through inhibiting neutrophil infiltration and preserving gastric mucus synthesis and secretion in rats, functions that are closely related to the maintenance of constitutive NOS activity.  相似文献   

15.
Capsaicin and papaverine are potent vasorelaxants with strong gastroprotective activity against damage induced by absolute ethanol. This protection was originally attributed to the increase in gastric mucosal blood flow (GBF) but the possibility that NO mediates the protective and hyperemic effects of capsaicin and papaverine has been little studied. Using N-nitro-L-arginine (L-NNA), a selective blocker of NO synthase, and L-arginine as a substrate for NO, we investigated the role of NO in protective action of capsaicin and papaverine against ethanol-induced gastric damage and in GBF. Pretreatment with capsaicin (0.1-0.5 mg/kg i.g.) or papaverine (0.1-2 mg/kg i.g.) reduced dose-dependently the area of ethanol-induced lesions, the LD50 being 0.3 and 1 mg/kg, respectively. This protection was accompanied by a gradual increase in the GBF. Intravenous (i.v.) injection of L-NNA (1.2-5 mg/kg), which by itself caused only a small increase in ethanol lesions, reversed dose-dependently the protective and hyperemic effects of capsaicin and papaverine against ethanol-induced damage and attenuated the increase in GBF induced by each of these agents alone. This deleterious effect of L-NNA on the gastric mucosa and the GBF was fully antagonized by L-arginine (200 mg/kg i.v.) but not by D-arginine. L-arginine partly restored the decrease in GBF induced by L-NNA. Pretreatment with indomethacin (5 mg/kg i.p.), which suppressed the generation of PG by 85%, slightly enhanced the mucosal lesions induced by ethanol but failed to affect the fall in GBF induced by this irritant. Gastroprotective and hyperemic effects of capsaicin and papaverine were partly reversed by indomethacin suggesting that endogenous PG are also implicated in these effects. Addition of L-NNA to indomethacin completely eliminated both the protective and hyperemic effects of capsaicin and papaverine. We conclude that both NO and PG contribute to the gastroprotective and hyperemic effects of capsaicin and papaverine on the gastric mucosa.  相似文献   

16.
Gastric mucus plays an important role in gastric mucosal protection. Apart from its "barrier" function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/ xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetyloysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion.  相似文献   

17.
TRH analogue, RX 77368, injected intracisternally (i.c.) at high dose (3 microg/rat) produces gastric mucosal lesion formation through vagal-dependent pathway. The gastric mucosal hyperemia induced by i.c. RX 77368 was shown to be mediated by muscarinic vagal efferent fibres and mast cells. Furthermore, electrical vagal stimulation was observed to induce gastric mucosal mast cell degranulation. The aim of the study was to assess the influence of ketotifen, a mast cell stabilizer, on RX 77368-induced gastric lesion formation and gastric acid secretion. RX 77368 (3 microg, i.c.) or vehicle (10 microL, i.c.) was delivered 240 min prior to the sacrifice of the animals. Ketotifen or vehicle (0.9% NaCl, 0.5 mL) was injected intraperitoneally (i.p.) at a dose of 10 mg x kg(-1) 30 min before RX 77368 injection. The extent of mucosal damage was planimetrically measured by a video image analyzer (ASK Ltd., Budapest) device. In the gastric acid secretion studies, the rats were pretreated with ketotifen (10 mg x kg(-1), i.p.) or vehicle (0.9% NaCl, 0.5 mL, i.p.), 30 min later pylorus-ligation was performed and RX 77368 (3 microg, i.c.) or vehicle (0.9% NaCl, 10 microL, i.c.) was injected. The rats were killed 240 min after i.c. injection, and the gastric acid secretion was measured through the titration of gastric contents with 0.1 N NaOH to pH 7.0. RX 77368 (3 microg, i.c.) resulted in a gastric mucosal lesion formation involving 8.2% of the corpus mucosa (n = 7). Ketotifen elicited an 85% inhibition on the development of mucosal lesions (n = 7, P < 0.001) whereas ketotifen alone had no effect on the lesion formation in the mucosa (n = 7). The RX 77368 induced increase of gastric acid secretion was not influenced by ketotifen pretreatment in 4-h pylorus-ligated animals. Central vagal activation induced mucosal lesion formation is mediated by the activation of mucosal mast cells in the stomach. Mast cell inhibition by ketotifen does not influence gastric acid secretion induced by i.c. TRH analogue in 4-h pylorus-ligated rats.  相似文献   

18.
The role of vagus nerve was studied in the development of gastric mucosal damage induced by ethanol (ETOH). The investigations were carried out on Sprague-Dawley rats. The gastric mucosal damage was produced by i.g. administration of 1 ml 96% ETOH. Acute surgical vagotomy (ASV) was carried out 30 min, chronic surgical vagotomy (CSV) 14 days before the ETOH application. The animals were sacrificed at 0, 1, 5, 15, 60 min after ETOH. Evans blue (EB) (1 mg/100 g) was given i.v. 15 min before autopsy. The number and severity of lesions the EB accumulation of the gastric juice and gastric mucosa were noted. It was found, that: 1. The vascular permeability increased after ETOH treatment at an early state (within 1-5 min) in association to the macroscopic appearance of erosions. 2. The number and extension of lesions, the EB concentrations in gastric juice and gastric mucosa were significantly higher both after ASV and CSV. 3. Surgical vagotomy alone did not increase the vascular permeability. 4. No significant ulcer formation was observed in vagotomized rats without ETOH treatment. It was concluded, that 1. Both ASV and CSV enhanced the development of gastric mucosal injury induced by ethanol. 2. Neither acute nor chronic surgical vagotomy exerted an effect of the development of mucosal injury and vascular permeability without the application of the noxious agent. 3. The further increase of enhanced vascular permeability by vagotomy probably has an etiologic role in the aggravating effect of ASV and CSV on the development of chemical-induced lesions.  相似文献   

19.
Prostaglandins may have many biological actions including hypotensive and antipeptic ulcer activity. The purpose of this investigation was to determine if the primary alcohol prostaglandin E1 analog rioprostil1 prevents ethanol-induced gastric lesions (antigastrolesive activity), inhibits gastric acid secretion (antisecretory activity), or causes diarrhea in rats when administered topically, and to compare these responses to the effect of rioprostil following enteral (oral or intraduodenal) administration. Rioprostil exhibited antigastrolesive activity in rats when administered either orally or when applied topically. The topical antigastrolesive potency of rioprostil against ethanol-induced lesions [ED50 = 3.7 (0.5-12) micrograms/kg] was similar to its oral potency [ED50 = 1.9 (1.7-2.2) micrograms/kg]. In 4 hr pylorus-ligated rats, topically administered rioprostil inhibited total gastric acid output with a potency [ED50 = 5.1 (2.6-24) mg/kg] similar to intraduodenal administration [ED50 = 3.7 (2.8-5.3) mg/kg]. In addition, in these rats rioprostil increased mucin levels and did not cause dermal irritation. Finally, the incidence of diarrhea was lower when rioprostil was applied topically than when given orally with a 16-fold difference in potency between these two routes of administration. These data show that when rioprostil is applied via the skin it has antigastrolesive, gastric antisecretory and mucus stimulatory effects in rats equal to enteral administration, and a diarrheagenic potency lower than following oral administration. This profile suggests that topical administration of rioprostil may be a useful means of delivery for clinical treatment of peptic ulcer disease.  相似文献   

20.
As to earlier observations that beta-carotene prevents the development of gastric mucosal injury produced by different noxious agent, however, its cytoprotective effect can be abolished by acute surgical vagotomy. The aim of this study was to evaluate the possible correlation between the gastric mucosal cytoprotective effect of beta-carotene and its gastric mucosal level in rats treated with IND. The gastric mucosal damage was produced by the administration of IND (20 mg/kg s.c.). The instillation of beta-carotene and acute surgical vagotomy (ASV) or SHAM operation were carried out 30 min before IND treatment. The rats were sacrificed 4 h after IND application, and the number and severity of gastric mucosal erosions were noted. The blood rats was collected quantitatively, the liver and the gastric mucosa were removed, and the beta-carotene and vitamin A level of the gastric mucosa, serum and liver were measured with HPLC. It was found that: 1. Beta-carotene induced gastric cytoprotection in SHAM-operated rats treated with IND but its effect disappeared after ASV. 2. Although the beta-carotene level of the gastric mucosa increased its concentration was not elevated in the serum of intact and vagotomized animals either. 3. Vitamin A Formation was not detected in the liver of animals with or without ASV. It was concluded that the lack of intake of beta-carotene into the gastric mucosa can not play etiologic role in the failure of gastric cytoprotection of rats with acute bilateral surgical vagotomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号