首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
人肝癌细胞系的糖蛋白质组学研究   总被引:2,自引:0,他引:2  
糖基化是最重要的蛋白质翻译后形式之一,糖基化蛋白的糖链部分影响着蛋白质的折叠和稳定性以及其生物学功能.许多恶性肿瘤组织与正常组织相比已显示出蛋白质糖基化的差异.采用蛋白质组学分析方法结合先进的糖蛋白荧光染色技术,研究了正常人肝细胞系(ChangLiver)和人肝癌细胞系(Hep3B)糖蛋白糖基化的差异.首先用细胞裂解法提取细胞总蛋白质,进行双向电泳(2-DE),然后用pro-QEmerald488糖蛋白荧光染料进行糖蛋白染色,得到两种细胞系糖基化蛋白表达谱,经2-DE分析软件Dymension分析2-DE图像,比较糖蛋白的糖基化程度,并对糖基化蛋白进行质谱鉴定.结果显示正常人肝细胞表达(74±2)个(n=3),而人肝癌细胞系表达(78±3)个糖蛋白(n=3).两者匹配的糖蛋白质点31个,Hep3B表达而ChangLiver不表达的糖蛋白质点47个,ChangLiver表达而Hep3B不表达的糖蛋白质点43个.两种细胞系糖基化程度存在明显差异,与正常人肝细胞相比,肝癌细胞发生糖基化改变的糖蛋白有25个,其中糖基化水平上调的有10个,下调的有15个,质谱鉴定出12个发生糖基化改变的糖蛋白.这些结果显示蛋白质糖基化改变可能在肝癌的发生和发展中起一定作用.  相似文献   

2.
岩藻糖糖链与肝癌细胞的迁移作用   总被引:6,自引:2,他引:4  
通过凝集素印迹转移电泳和亲和层析技术,对岩藻糖糖基化蛋白在肝癌细胞中的作用进行了研究.在化学诱发的大鼠肝癌过程中, 分子质量在23 ku到40 ku范围内与荆豆凝集素(UEA)及扁豆凝集素(LCA)结合的岩藻糖糖基化蛋白显著减少, 诱癌至17~20周这些条带重新恢复,而分子质量为80 ku的条带却在诱癌过程中逐周增加.比较高、低转移性肝癌细胞的岩藻糖糖基化蛋白, 发现高转移性肝癌细胞具有多种增强的条带.利用橘果粉胞凝集素(AAL)和LCA亲和层析柱分离了这些岩藻糖基化糖蛋白, 并用这些糖蛋白直接作用于肝癌细胞,发现AAL-糖蛋白具有显著抑制肝癌细胞迁移的作用,迁移细胞数从对照的(100±4.9)%下降到(48.1±2.5)% (P<0.01), LCA-糖蛋白也有类似作用.用胰酶和木瓜蛋白酶水解蛋白质部分后,形成的糖肽抑制肝癌细胞迁移的作用并不改变,甚至增强.此外直接用肝癌转移灶的组织测定了岩藻糖转移酶活性,发现α1,6岩藻糖基转移酶活性显著比正常肝组织高,而α1,3岩藻糖基转移酶活性没有显著的改变.用系列凝集素分析发现这些糖链主要能结合伴刀豆凝集素A, 也能结合E-型及L-型植物凝集素, 显示这种糖蛋白的糖链可能含有较多的高甘露糖型.这些结果提示糖链在诱癌过程中结构有了改变,使之在肝癌细胞的迁移和转移中起重要作用.  相似文献   

3.
肝癌转移相关的核心岩藻糖基化 蛋白质表达谱的研究   总被引:2,自引:2,他引:2  
通过比较研究不同转移潜能肝癌细胞系中核心岩藻糖基化蛋白质表达谱的差别,筛查与转移相关的重要糖蛋白 . 用 SDS- 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 、双向电泳 (2-DE) 和凝集素印迹技术联合基质辅助激光解吸飞行时间串联质谱 (MALDI-TOF-MS/MS) 分析,建立 3 种不同转移潜能人肝癌细胞系 Hep3B 、 MHCC97L 和 MHCC97H 的核心岩藻糖基化蛋白质表达图谱 . 比较研究发现,不同转移潜能肝癌细胞呈现不同的 SDS-PAGE/LCA 凝集素印迹图谱, MHCC-97H 和 MHCC-97L 在 35~45 ku 和 45~60 ku 间出现了 Hep3B 未见的条带 . 在核心岩藻糖基化蛋白质表达图谱中, Hep3B、 MHCC97L 和 MHCC97H 分别平均检测到 (55±7) 个蛋白质点 (n=3), (60±6) 个蛋白质点 (n=3), (61±4) 个蛋白质点 (n=3);以各自双向电泳图谱为参考胶,Hep3B、 MHCC97L 和 MHCC97H 分别与其匹配的平均匹配点数为 (25±3) 个 (n=3), (30±4) 个 (n=3), (28±3) 个 (n=3). 该图谱中,与 Hep3B 相比, MHCC97L 有 13 个点未匹配,其中 9 个点为 Hep3B( - )/MHCC97L(+); MHCC97H 有 9 个点未匹配,其中 6 个点为 Hep3B( - )/MHCC97H(+), MALDI-TOF-MS/MS 可鉴定出 Annexin1、 Keratin 8 等 12 种差异蛋白质 . 这些结果证实了不同转移潜能的肝癌细胞有明显的核心岩藻基化糖蛋白差异性表达 . 提示肝癌转移可能与这些差异糖蛋白及其核心岩藻糖基化有关 .  相似文献   

4.
糖组学方法筛查人肝癌细胞转移过程中发挥重要作用的核心岩藻糖基化蛋白质分子,解析比较筛出的差异蛋白——细胞角蛋白8(CK8)翻译及糖基化修饰改变与人肝癌细胞转移潜能的关系.应用双向电泳(2-DE)、凝集素亲和印迹、凝集素亲和沉淀联合质谱分析技术,筛查并验证与肝癌转移相关的核心岩藻糖基化蛋白;应用细胞免疫荧光和蛋白质免疫印迹检测CK8的蛋白质表达情况;应用免疫沉淀结合多种凝集素亲和印迹,推测其与肝癌转移相关的寡糖链结构改变.研究发现,3种不同转移潜能人肝癌细胞Hep3B、MHCC97-L和MHCC97-H的扁豆凝集素(LCA)亲和印迹表达谱中,分子质量55~60ku、等电点4~6区域处有核心岩藻糖基化蛋白呈差异表达,质谱鉴定为CK8.LCA亲和沉淀及蛋白质印迹进一步验证CK8异常核心岩藻糖基化与肝癌转移相关;研究发现,CK8分布于细胞浆内,在MHCC97-L和MHCC97-H细胞中蛋白质表达水平较Hep3B高,在MHCC97-H中与LCA和蓖麻凝集素(RCA-1)的亲和力较Hep3B强.以上结果提示,2-DE和凝集素印迹技术联合MALDI-TOF-MS/MS分析可用于筛查疾病过程相关的异常糖基化蛋白质分子,CK8蛋白水平、核心岩藻糖基化及β-1,4末端半乳糖基化的增加均与肝癌细胞转移潜能相关.  相似文献   

5.
蛋白质糖基化修饰是哺乳动物中最为常见的一种翻译后修饰,蛋白质的寡糖侧链具有重要的生物学意义,如蛋白质分子间及细胞间相互作用、识别、肿瘤侵袭与转移等.本实验应用寡甘露糖型亲合层析柱、唾液酸型层析柱和O-连接糖蛋白亲合层析柱从血清中序列性提取寡甘露糖型、唾液酸型的N-连接糖蛋白及O-连接的糖蛋白,一维和二维电泳图谱显示血清...  相似文献   

6.
胃癌是一类高发病率和高死亡率的恶性肿瘤.研究表明,癌前感染与胃癌的发生发展过程始终伴随着蛋白糖基化的异常.例如在癌前感染阶段糖蛋白糖链发挥的作用:在感染阶段,幽门螺杆菌(Helicobacter pylori,H.pylori)吸附导致的唾液酸化路易斯X抗原的上调,增强了H.pylori的吸附作用使其在胃部定殖并诱发持续的炎症反应;在慢性胃炎和肠上皮化生阶段唾液酸化的Tn抗原表达上调.胃癌发生发展过程中涉及到了血清、组织、细胞中的蛋白糖基化的改变,如核心岩藻糖基化N-糖链表达的下调,β1,6-连接的N-乙酰葡糖胺分支型N-糖链的增加,以及细胞黏附分子糖基化的改变.本文综述了胃癌相关糖蛋白糖链研究的最新进展,阐述了糖基化在胃癌的发生发展中发挥的重要作用及其作为胃癌早期生物标志物与药物靶点的潜在临床应用价值.  相似文献   

7.
糖蛋白质组学方法鉴定人健康肝组织核心岩藻糖基化蛋白质,将有助于发现肝癌、慢性肝病相关异常核心岩藻糖基化蛋白质.应用凝集素亲和层析技术、双向电泳(2-DE)联合基质辅助激光解吸飞行时间串联质谱(MALDI-TOF-MS/MS)分析,建立人健康肝组织核心岩藻糖基化蛋白表达谱,图谱均点数为(130±3)个,挖取90个蛋白质点进行质谱鉴定,数据库搜索及去冗余后,共鉴定53种蛋白质,主要分布于pI5~9,分子质量为10~100ku区域处.Gene Ontology分类发现它们参与体内代谢等过程,应用NetNGlyc对它们进行糖基化位点预测,并通过蛋白质免疫沉淀联合凝集素亲和印迹对其中的结合珠蛋白前体,α烯醇化酶的核心岩藻糖基化进行了再验证.以上结果提示,凝集素层析、2-DE联合MALDI-TOF-MS/MS分析是一种鉴定某种特定类型糖蛋白的高通量检测方法,所建立的表达谱可用于发现疾病发生、发展中相关的异常核心岩藻糖基化蛋白质.  相似文献   

8.
酵母真核表达系统是常用的安全性较高的外源蛋白表达系统。酵母细胞内存在翻译后糖基化修饰过程,对其糖基化修饰系统进行改造可用于生产人源糖蛋白。研究表明,可以通过基因工程手段消除酵母特有的内源糖基化反应、引入哺乳动物细胞表达系统中糖基化类型等方法对酵母糖基化路径进行改造。近年来许多研究通过对酵母菌株糖基化位点突变、基因缺失等方法对酵母糖基化系统进行改造,探究糖基化修饰对蛋白质功能的影响,这为利用酵母生产治疗性蛋白和新型糖基化疫苗提供了新的思路。本综述将对近年来酵母糖基化改造成果及研究进展进行综述。  相似文献   

9.
多种哺乳和非哺乳动物的蛋白质表达系统已成功用于重组糖蛋白药物的生产。糖基化对于生物药品的研究开发至关重要,对生物药品的药效、半衰期及抗原性等产生重要影响。糖基化工程的目的是生产组分明晰、结构均一的N-和O-连接的糖基化蛋白药物。N-糖基化改造的相关研究显示,利用哺乳动物和非哺乳动物表达系统可以表达均匀的N-聚糖重组糖蛋白。与N-糖基化改造相比, O-糖基化的改造研究尚处于起步阶段。首个糖基化工程单克隆抗体已在美国和日本获得上市批准。综述了重组蛋白表达系统的糖基化工程化改造的研究进展,包括蛋白质药物的 N-糖基化改造和O-糖基化改造的最新进展,以期为蛋白质药物的糖基化工程改造研究提供参考。  相似文献   

10.
哺乳动物中约有50%以上的蛋白质都发生了糖基化修饰.连接在丝氨酸或苏氨酸上的O-连接糖链是常见的蛋白质糖基化修饰方式之一,其主要功能是维持与其连接的蛋白质部分的空间构象,保护其免受蛋白酶水解及覆盖某些抗原决定簇.糖链结构的解析有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜辅助(FASP)富集细胞、血清和尿液中糖蛋白全O-连接糖链的方法,根据糖蛋白与其糖链结构之间的分子质量差异,利用10 KD超滤膜富集蛋白质样品中由β消除反应释放的全O-连接糖链,将糖链甲基化修饰后再使用MALDI-TOF/TOF-MS进行解析,同时利用二级质谱进行结构确认.通过上述方法可从标准糖蛋白mucin、细胞、血清和尿液样本中分别鉴定到83、29、33和85种O-连接糖链结构,利用该方法可以从复杂样品中富集和解析糖蛋白全O-连接糖链,实现快速、高效、高通量地解析糖蛋白O-连接糖链的目的.  相似文献   

11.
Shi X  Elliott RM 《Journal of virology》2004,78(10):5414-5422
The membrane glycoproteins Gn and Gc of Hantaan virus (HTNV) (family Bunyaviridae) are modified by N-linked glycosylation. The glycoproteins contain six potential sites for the attachment of N-linked oligosaccharides, five sites on Gn and one on Gc. The properties of the N-linked oligosaccharide chains were analyzed by treatment with endoglycosidase H, peptide:N-glycosidase F, tunicamycin, and deoxynojirimycin and were confirmed to be completely of the high-mannose type. Ten glycoprotein gene mutants were constructed by site-directed mutagenesis, including six single N glycosylation site mutants and four double-site mutants. We determined that four sites (N134, -235, -347, and -399) on Gn and the only site (N928) on Gc in their ectodomains are utilized, whereas the fifth site on Gn (N609), which faces the cytoplasm, is not glycosylated. The importance of individual N-oligosaccharide chains varied with respect to folding and intracellular transport. The oligosaccharide chain on residue N134 was found to be crucial for protein folding, whereas single mutations at the other glycosylation sites were better tolerated. Mutation at glycosylation sites N235 and N399 together resulted in Gn misfolding. The endoplasmic reticulum chaperones calnexin and calreticulin were found to be involved in HTNV glycoprotein folding. Our data demonstrate that N-linked glycosylation of HTNV glycoproteins plays important and differential roles in protein folding and intracellular trafficking.  相似文献   

12.
Guarino C  DeLisa MP 《Glycobiology》2012,22(5):596-601
Asparagine-linked (N-linked) protein glycosylation has been observed in all domains of life, including most recently in bacteria and is now widely considered a universal post-translational modification. However, cell-based production of homogeneous glycoproteins for laboratory and preparative purposes remains a significant challenge due in part to the complexity of this process in vivo. To address this issue, an easily available and highly controllable Escherichia coli-based cell-free system for the production of N-linked glycoproteins was developed. The method was created by coupling existing in vitro translation systems with an N-linked glycosylation pathway reconstituted from defined components. The translation/glycosylation system yielded efficiently glycosylated target proteins at a rate of hundreds of micrograms/milliliters in half a day. This is the first time a prokaryote-based cell-free protein synthesis system has generated N-linked glycoproteins.  相似文献   

13.
Mi W  Jia W  Zheng Z  Wang J  Cai Y  Ying W  Qian X 《Glycoconjugate journal》2012,29(5-6):411-424
Cell surface glycoproteins are one of the most frequently observed phenomena correlated with malignant growth. Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. The majority of hepatocellular carcinoma cell surface proteins are modified by glycosylation in the process of tumor invasion and metastasis. Therefore, characterization of cell surface glycoproteins can provide important information for diagnosis and treatment of liver cancer, and also represent a promising source of potential diagnostic biomarkers and therapeutic targets for hepatocellular carcinoma. However, cell surface glycoproteins of HCC have been seldom identified by proteomics approaches because of their hydrophobic nature, poor solubility, and low abundance. The recently developed cell surface-capturing (CSC) technique was an approach specifically targeted at membrane glycoproteins involving the affinity capture of membrane glycoproteins using glycan biotinylation labeling on intact cell surfaces. To characterize the cell surface glycoproteome and probe the mechanism of tumor invasion and metastasis of HCC, we have modified and evaluated the cell surface-capturing strategy, and applied it for surface glycoproteomic analysis of hepatocellular carcinoma cells. In total, 119 glycosylation sites on 116 unique glycopeptides were identified, corresponding to 79 different protein species. Of these, 65 (54.6?%) new predicted glycosylation sites were identified that had not previously been determined experimentally. Among the identified glycoproteins, 82?% were classified as membrane proteins by a database search, 68?% had transmembrane domains (TMDs), and 24?% were predicted to contain 2-13 TMDs. Moreover, a total of 26 CD antigens with 50 glycopeptides were detected in the membrane glycoproteins of hepatocellular carcinoma cells, comprising 43?% of the total glycopeptides identified. Many of these identified glycoproteins are associated with cancer such as CD44, CD147 and EGFR. This is a systematic characterization of cell surface glycoproteins of HCC. The membrane glycoproteins identified in this study provide very useful information for probing the mechanism of liver cancer invasion and metastasis.  相似文献   

14.
Glycosylation is the predominant protein modification to diversify the functionality of proteins. In particular, N-linked protein glycosylation can increase the biophysical and pharmacokinetic properties of therapeutic proteins. However, the major challenges in studying the consequences of protein glycosylation on a molecular level are caused by glycan heterogeneities of currently used eukaryotic expression systems, but the discovery of the N-linked protein glycosylation system in the ε-proteobacterium Campylobacter jejuni and its functional transfer to Escherichia coli opened up the possibility to produce glycoproteins in bacteria. Toward this goal, we elucidated whether antibody fragments, a potential class of therapeutic proteins, are amenable to bacterial N-linked glycosylation, thereby improving their biophysical properties. We describe a new strategy for glycoengineering and production of quantitative amounts of glycosylated scFv 3D5 at high purity. The analysis revealed the presence of a homogeneous N-glycan that significantly increased the stability and the solubility of the 3D5 antibody fragment. The process of bacterial N-linked glycosylation offers the possibility to specifically address and alter the biophysical properties of proteins.  相似文献   

15.
Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response. Deciphering the glycan composition and structure on these glycoproteins may assist in the development of glycan-targeted therapeutic intervention strategies. We examined the site occupancy and glycan composition of recombinant soluble G (sG) glycoproteins expressed in two different mammalian cell systems, transient human embryonic kidney 293 (HEK293) cells and vaccinia virus (VV)-HeLa cells, using a suite of biochemical and biophysical tools: electrophoresis, lectin binding and tandem mass spectrometry. The N-linked glycans of both VV and HEK293-derived sG glycoproteins carried predominantly mono- and disialylated complex-type N-glycans and a smaller population of high mannose-type glycans. All seven consensus sequences for N-linked glycosylation were definitively found to be occupied in the VV-derived protein, whereas only four sites were found and characterized in the HEK293-derived protein. We also report, for the first time, the existence of O-linked glycosylation sites in both proteins. The striking characteristic of both proteins was glycan heterogeneity in both N- and O-linked sites. The structural features of G protein glycosylation were also determined by X-ray crystallography and interactions with the ephrin-B2 receptor are discussed.  相似文献   

16.
Protein glycosylation is a common post-translational modification and has been increasingly recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. N-linked glycosylation is prevalent in proteins on the extracellular membrane, and many clinical biomarkers and therapeutic targets are glycoproteins. Here, we describe a protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N-linked glycosylation sites (N-glycosites) by tandem mass spectrometry. The method oxidizes the carbohydrates in glycopeptides into aldehydes, which can be immobilized on a solid support. The N-linked glycopeptides are then optionally labeled with a stable isotope using deuterium-labeled succinic anhydride and the peptide moieties are released by peptide-N-glycosidase. In a single analysis, the method identifies hundreds of N-linked glycoproteins, the site(s) of N-linked glycosylation and the relative quantity of the identified glycopeptides.  相似文献   

17.
Protein glycosylation in bacteria: sweeter than ever   总被引:1,自引:0,他引:1  
Investigations into bacterial protein glycosylation continue to progress rapidly. It is now established that bacteria possess both N-linked and O-linked glycosylation pathways that display many commonalities with their eukaryotic and archaeal counterparts as well as some unexpected variations. In bacteria, protein glycosylation is not restricted to pathogens but also exists in commensal organisms such as certain Bacteroides species, and both the N-linked and O-linked glycosylation pathways can modify multiple proteins. Improving our understanding of the intricacies of bacterial protein glycosylation systems should lead to new opportunities to manipulate these pathways in order to engineer glycoproteins with potential value as novel vaccines.  相似文献   

18.
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.  相似文献   

19.
A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.  相似文献   

20.
Among bacterial species demonstrated to have protein O-glycosylation systems, that of Bacteroides fragilis and related species is unique in that extracytoplasmic proteins are glycosylated at serine or threonine residues within the specific three-amino acid motif D(S/T)(A/I/L/M/T/V). This feature allows for computational analysis of the proteome to identify candidate glycoproteins. With the criteria of a signal peptidase I or II cleavage site or a predicted transmembrane-spanning region and the presence of at least one glycosylation motif, we identified 1021 candidate glycoproteins of B. fragilis. In addition to the eight glycoproteins identified previously, we confirmed that another 12 candidate glycoproteins are in fact glycosylated. These included four glycoproteins that are predicted to localize to the inner membrane, a compartment not previously shown to include glycosylated proteins. In addition, we show that four proteins involved in cell division and chromosomal segregation, two of which are encoded by candidate essential genes, are glycosylated. To date, we have not identified any extracytoplasmic proteins containing a glycosylation motif that are not glycosylated. Therefore, based on the list of 1021 candidate glycoproteins, it is likely that hundreds of proteins, comprising more than half of the extracytoplasmic proteins of B. fragilis, are glycosylated. Site-directed mutagenesis of several glycoproteins demonstrated that all are glycosylated at the identified glycosylation motif. By engineering glycosylation motifs into a naturally unglycosylated protein, we are able to bring about site-specific glycosylation at the engineered sites, suggesting that this glycosylation system may have applications for glycoengineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号