首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indicator dilution technique was used to study effects of reduced vascular volume or acute injury on removal of low doses of [3H]propranolol and [14C]serotonin (5-hydroxytryptamine, 5-HT) by perfused rabbit lung. Glass-bead (500 micron) embolization doubled pulmonary arterial pressure (Ppa) at flow rates of 20, 50, and 100 ml/min, decreased volume of distribution by approximately 50%, and increased pulmonary vascular resistance by at least 60%. Before embolization, (flow rate 20 ml/min) removal of [3H]propranolol and [14C] 5-HT was 89 +/- 2 and 75 +/- 5%, respectively, and was unaltered by changes in flow rate. However, after embolization, [3H]propranolol and [14C]5-HT removal decreased in a flow-dependent manner, reaching 28 +/- 4 and 1 +/- 3% (P less than 0.05), respectively, at a flow rate of 100 ml/min. When phorbol myristate acetate (PMA, 200 nM) was perfused (50 ml/min) through the lungs for 15 min, Ppa increased from 13 +/- 1 to 25 +/- 2 cmH2O (P less than 0.05), whereas [3H]propranolol removal decreased from 92 +/- 1 to 75 +/- 5% (P less than 0.05) and [14C]5-HT removal decreased from 73 +/- 3 to 46 +/- 8% (P less than 0.05). The PMA also caused vasoconstriction, which could be partially blocked by adding papaverine (500 microM) to the perfusion medium. Under the latter conditions, Ppa increased to 19 +/- 1 cmH2O and [3H]propranolol removal was unaffected. However, the combination of PMA and papaverine reduced [14C]5-HT removal from 64 +/- 4 to 19 +/- 3%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We employed ultrasonic nebulization for homogeneous alveolar tracer deposition into ventilated perfused rabbit lungs. (22)Na and (125)I-albumin transit kinetics were monitored on-line with gamma detectors placed around the lung and the perfusate reservoir. [(3)H]mannitol was measured by repetitive counting of perfusion fluid samples. Volume of the alveolar epithelial lining fluid was estimated with bronchoalveolar lavage with sodium-free isosmolar mannitol solutions. Sodium clearance rate was -2.2 +/- 0.3%/min. This rate was significantly reduced by preadministration of ouabain/amiloride and enhanced by pretreatment with aerosolized terbutaline. The (125)I-albumin clearance rate was -0.40 +/- 0.05%/min. The appearance of [(3)H]mannitol in the perfusate was not influenced by ouabain/amiloride or terbutaline but was markedly enhanced by pretreatment with aerosolized protamine. An epithelial lining fluid volume of 1.22 +/- 0.21 ml was calculated in control lungs. Fluid absorption rate was 1.23 microl x g lung weight(-1) x min(-1), which was blunted after pretreatment with ouabain/amiloride. We conclude that alveolar tracer loading by aerosolization is a feasible technique to assess alveolar epithelial barrier properties in aerated lungs. Data on active and passive sodium flux, paracellular solute transit, and net fluid absorption correspond well to those in previous studies in fluid-filled lungs; however, albumin clearance rates were markedly higher in the currently investigated aerated lungs.  相似文献   

3.
To determine whether hypoxic pulmonary vasoconstriction was associated with release of sulfidopeptide leukotrienes (SPLTs) from the lung, we measured SPLT activity by bioassay (guinea pig ileum) and radioimmunoassay in lymph, perfusate, and bronchoalveolar lavage (BAL) fluid from sheep lungs (n = 20) isolated and perfused in situ with a constant flow of autologous blood (100 ml.kg-1.min-1) containing indomethacin (60 micrograms/ml). The protocol consisted of three periods, each at least 1 h in duration. In experimental lungs, inspired O2 concentration (FIO2) was 28.2% in periods 1 and 3 and 4.2% in period 2. In control lungs, FIO2 was 28.2% throughout. Hypoxia increased pulmonary arterial pressure but did not alter peak tracheal pressure, lung lymph flow, or weight gain measured during the last 30 min of each period. SPLT activity was greatest in lung lymph and least in BAL fluid. Hypoxia did not alter SPLT activity in any fluid. Similar results were obtained in lungs not treated with indomethacin (n = 15). These data do not support the hypothesis that hypoxic pulmonary vasoconstriction is mediated by SPLTs.  相似文献   

4.
Substantial removal of the vasoconstrictor peptide endothelin-1 (ET-1) by the pulmonary circulation has been reported to occur in perfused guinea pig and rat lungs. We examined the uptake of ET-1 by coronary and pulmonary circulations of the rabbit by measuring single-pass extraction of ET-1 in the isolated heart and lung. In separate experiments, each organ was perfused at 30 ml/min with Krebs-albumin (3%) solution. A bolus of 125I-ET-1 and [14C]dextran in 0.3 ml Krebs-albumin solution was injected, and extraction of endothelin (EET), relative to that of an intravascular reference indicator, [14C]dextran, was determined by multiple indicator-dilution technique. EET was 5 +/- 2% (SE) in the heart and 49 +/- 4% in the lung. Increasing flow rate in the lung preparation to approximate the mean transit time in the heart preparation did not significantly alter EET. Despite insignificant uptake of ET-1, the coronary circulation extracted an angiotensin-converting enzyme inhibitor (351A) and metabolized a synthetic angiotensin-converting enzyme substrate (benzoyl-phenyl-alanyl-proline), both properties of the normal pulmonary circulation. We therefore conclude that there is no significant ET-1 uptake in the coronary vascular bed.  相似文献   

5.
Microcarriers of known diameter can be used to collect endothelial cells from microvessels of the same or slightly smaller internal diameter. The procedure is illustrated by collection of endothelial cells from rabbit pulmonary pre-capillary vessels. The lungs are perfused free of blood with physiological saline and then cold (4 °C) saline (containing EDTA, 0.02 %, and microcarriers 600/ml; 40–60 μm diameter) is perfused via the pulmonary artery. The direction of flow is reversed periodically to collect the bead-cell harvest from the arterial side. Cold shock and EDTA cause the endothelial cells to detach from the vessels under conditions such that the cells remain attached to the microcarriers. The selective attachment to microcarriers is apparently aided by the tight fit of the beads within vessels of the same diameter. Beads do not emerge on the venous side, all being trapped at the pre-capillary level. Electron microscopic examination of lungs fixed during the perfusion shows that the beads lodge in terminal arterioles and pre-capillary vessels (approximately 40–60 μm in diameter, with one, sometimes incomplete, muscle layer). Endothelial cells recovered on microcarriers can be allowed to migrate on to flasks and back on to beads. The resultant cultures have an endothelial morphology and possess high levels of angiotensin coverting enzyme and carboxypeptidase N activity.  相似文献   

6.
Using tracings of (125)I-labeled fibrin(ogen) in rodents, we examined the hypothesis that platelets impede the lysis of pulmonary emboli. (125)I-Microemboli (ME, 3-10 micron diameter) lodged homogeneously throughout the lungs after intravenous injection in both rats and mice (60% of injected dose), caused no lethality, and underwent spontaneous dissolution (50 and 100% within 1 and 5 h, respectively). Although lung homogenates displayed the most intense fibrinolytic activity of all the major organs, dissolution of ME was much slower in isolated perfused lungs (IPL) than was observed in vivo. Addition of rat plasma to the perfusate facilitated ME dissolution in IPL to a greater extent than did addition of tissue-type plasminogen activator alone, suggesting that permeation of the clot by plasminogen is the rate-limited step in lysis. Platelet-containing ME injected in rats lysed much more slowly than did ME formed from fibrin alone. (125)I-Thrombi, formed in the pulmonary vasculature of mice in response to intravascular activation of platelets by injection of collagen and epinephrine, were essentially resistant to spontaneous dissolution. Moreover, injection of the antiplatelet glycoprotein IIb/IIIa antibody 7E3 F(ab')(2) facilitated spontaneous dissolution of pulmonary ME and augmented fibrinolysis by a marginally effective dose of Retavase (10 microg/kg) in rats. These studies show that platelets suppress pulmonary fibrinolysis. The mechanism(s) by which platelets stabilize ME and utility of platelet inhibitors to facilitate their dissolution deserves further study.  相似文献   

7.
During fetal life the lung develops as a liquid-filled structure with low blood flow compared with postnatal life. We studied the effects of liquid expansion of the fetal lung by measuring vascular conductance in perfused lungs in situ and arterial diameters in excised lungs of fetal lambs. Pulmonary vascular conductance invariably rose as the lung was deflated from its initial volume; maximal deflation to residual volume increased conductance 122%. With reexpansion, conductance fell progressively, culminating in cessation of flow at lung volumes of twice the initial volume. These changes persisted after vagotomy and thoracic sympathectomy and therefore were mechanical in character. Lung expansion from residual volume initially expanded 300- to 500-micron arteries but compressed arteries greater than 1,500 micron. Further expansion reduced the caliber of all arteries. Thus increasing lung liquid volume progressively constricts the pulmonary circulation in the fetus. Because the fetal pulmonary vascular resistance-lung volume relationship differs from that of the U-shaped form found in adult lungs, concepts based on the adult pulmonary circulation are not appropriate for liquid-filled fetal lungs.  相似文献   

8.
The total deposition of monodisperse, 0.026-0.19 micron (dry volume equivalent diameter) sodium chloride particles in the lungs of five healthy subjects, who breathed orally, was measured. For a tidal volume of 1,000 ml and flow rate of 500 ml/s, the percentages deposited were: 37.2 +/- 8.4% (mean +/- SD) for 0.026 micron, 23.8 +/- 3.3% for 0.051 micron, 22.8 +/- 3.1% for 0.096 micron, and 31.8 +/- 6.2% for 0.19 micron particles. The deposition minimum corresponded to a particle size of approximately 0.08 micron. Deposition did not correlate with measures of lung volume or body size but did correlate with forced expired flow rate after 75% of forced vital capacity (FVC) exhaled (FEF 75%/FVC) and with percent-predicted values for FEF 25-75% and FEF 75%. Lengthening the breathing period from 4 to 8 s/breath while maintaining flow rate at 500 ml/s caused an additional 11.3 +/- 3.1% of the inhaled particles to deposit. Sedimentation and diffusion were found to be the principal deposition mechanisms. These hygroscopic particles deposited according to sizes they would attain in air with a relative humidity between 96 and 100%.  相似文献   

9.
The purpose of this study was to determine the sites of hypoxic vasoconstriction in lungs of newborn rabbits. We isolated and perfused with blood the lungs from 19 rabbit pups, 7-23 days old. We maintained blood flow constant, continuously monitored pulmonary arterial and left atrial pressures, and alternated ventilation of the lungs with 95% O2-5% CO2 (control), and 95% N2-5% CO2 (hypoxia). Using micropipettes and a servonulling device, we measured pressures in 20-60-micron-diam subpleural arterioles and venules during control and hypoxic conditions. We inflated the lungs to a constant airway pressure of 5-7 cmH2O and kept left atrial pressure greater than airway pressure (zone 3) during micropuncture. In eight lungs we measured microvascular pressures first during control and then during hypoxia. We reversed this order in four lungs. In seven lungs we measured microvascular pressures only during hypoxia. We found a significant increase in pulmonary arterial pressure with no change in microvascular pressures. These results indicate that the site of hypoxic vasoconstriction in lungs of newborn rabbits is arteries greater than 60 micron in diameter.  相似文献   

10.
Pulmonary microvascular response to LTB4: effects of perfusate composition   总被引:1,自引:0,他引:1  
We examined the effects of leukotriene B4 (LTB4) on pulmonary hemodynamics and vascular permeability using isolated perfused guinea pig lungs and cultured monolayers of pulmonary arterial endothelial cells. In lungs perfused with Ringer solution, containing 0.5 g/100 ml albumin (R-alb), LTB4 (4 micrograms) transiently increased pulmonary arterial pressure (Ppa) and capillary pressure (Pcap). Pulmonary edema developed within 70 min after LTB4 injection despite a normal Pcap. The LTB4 metabolite, 20-COOH-LTB4 (4 micrograms), did not induce hemodynamic and lung weight changes. In lungs perfused with autologous blood hematocrit = 12 +/- 1%; protein concentration = 1.5 +/- 0.2 g/100 ml), the increases in Ppa and Pcap were greater, and both pressures remained elevated. The lung weight did not increase in blood-perfused lungs. In lungs perfused with R-alb (1.5 g/100 ml albumin) to match the blood perfusate protein concentration, LTB4 induced similar hemodynamic changes as R-alb (0.5 g/100 ml) perfusate, but the additional albumin prevented the pulmonary edema. LTB4 (10(-11)-10(-6) M) with or without the addition of neutrophils to the monolayer did not increase endothelial 125I-albumin permeability. Therefore LTB4 induces pulmonary edema when the perfusate contains a low albumin concentration, but increasing the albumin concentration or adding blood cells prevents the edema. The edema is not due to increased endothelial permeability to protein and is independent of hemodynamic alterations. Protection at higher protein-concentration may be the result of LTB4 binding to albumin.  相似文献   

11.
In a previous study, direct measurements of pulmonary capillary transit time by fluorescence video microscopy in anesthetized rabbits showed that chest inflation increased capillary transit time and decreased cardiac output. In isolated perfused rabbit lungs we measured the effect of lung volume, left atrial pressure (Pla), and blood flow on capillary transit time. At constant blood flow and constant transpulmonary pressure, a bolus of fluorescent dye was injected into the pulmonary artery and the passage of the dye through the subpleural microcirculation was recorded via the video microscope on videotape. During playback of the video signals, the light emitted from an arteriole and adjacent venule was measured using a video photoanalyzer. Capillary transit time was the difference between the mean time values of the arteriolar and venular dye dilution curves. We measured capillary transit time in three groups of lungs. In group 1, with airway pressure (Paw) at 5 cmH2O, transit time was measured at blood flow of approximately 80, approximately 40, and approximately 20 ml.min-1.kg-1. At each blood flow level, Pla was varied from 0 (Pla less than Paw, zone 2) to 11 cmH2O (Pla greater than Paw, zone 3). In group 2, at constant Paw of 15 cmH2O, Pla was varied from 0 (zone 2) to 22 cmH2O (zone 3) at the same three blood flow levels. In group 3, at each of the three blood flow levels, Paw was varied from 5 to 15 cmH2O while Pla was maintained at 0 cmH2O (zone 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this study was to determine the pattern of vascular pressure drop in newborn lungs and to define the contribution of active vasomotor tone to this longitudinal pressure profile. We isolated and perfused with blood the lungs from 22 rabbit pups, 5-19 days old. We inflated the lungs to a constant airway pressure of 7 cmH2O, and at constant blood flow, we maintained outflow pressure in the circulation greater than airway pressure at the level of micropuncture (zone 3). By the use of glass micropipettes and a servo-nulling device, we measured pressures in small (20-60 micron diam) subpleural arterioles and venules in the lungs of 13 newborn rabbits. We found that 60% of the pressure drop was in arteries, 31% in microvessels of less than 20-60 micron diam, and 9% in veins. In the lungs of an additional nine rabbit pups we measured microvascular pressures before and after the addition to the perfusate of the vasodilator, papaverine hydrochloride. We found that removal of vasomotor tone resulted in a 33% reduction in total lung vascular resistance, which resulted from a decrease in pressure in arterial vessels, with no change in microvascular pressure. These findings indicate that arteries of greater than 60 micron diam constitute the major source of vascular resistance in isolated perfused newborn rabbit lungs.  相似文献   

13.
Perfusion of isolated sheep lungs with blood causes spontaneous edema and hypertension preceded by decreases in perfusate concentrations of leukocytes (WBC) and platelets (PLT). To determine whether these decreases were caused by pulmonary sequestration, we continuously measured blood flow and collected pulmonary arterial and left atrial blood for cell concentration measurements in six lungs early in perfusion. Significant sequestration occurred in the lung, but not in the extracorporeal circuit. To determine the contribution of these cells to spontaneous injury in this model, lungs perfused in situ with a constant flow (100 ml.kg-1.min-1) of homologous leukopenic (WBC = 540 mm-3, n = 8) or thrombocytopenic blood (PLT = 10,000 mm-3, n = 6) were compared with control lungs perfused with untreated homologous blood (WBC = 5,320, PLT = 422,000, n = 8). Perfusion of control lungs caused a rapid fall in WBC and PLT followed by transient increases in pulmonary arterial pressure, lung lymph flow, and perfusate concentrations of 6-ketoprostaglandin F1 alpha and thromboxane B2. The negative value of reservoir weight (delta W) was measured as an index of fluid entry into the lung extravascular space during perfusion. delta W increased rapidly for 60 min and then more gradually to 242 g at 180 min. This was accompanied by a rise in the lymph-to-plasma oncotic pressure ratio (pi L/pi P). Relative to control, leukopenic perfusion decreased the ratio of wet weight to dry weight, the intra- plus extravascular blood weight, and the incidence of bloody lymph. Thrombocytopenic perfusion increased lung lymph flow and the rate of delta W, decreased pi L/pi P and perfusate thromboxane B2, and delayed the peak pulmonary arterial pressure. These results suggest that perfusate leukocytes sequestered in the lung and contributed to hemorrhage but were not necessary for hypertension and edema. Platelets were an important source of thromboxane but protected against edema by an unknown mechanism.  相似文献   

14.
Angiotensin-converting enzyme (ACE) was localized in perfused trout gills by measuring gill extraction of two radiolabeled ACE inhibitors, 125I-351A (an iodinated derivative of lisinopril) and 3H-RAC-X-65, and by autoradiography of gills perfused with 125I-351A. A 125I-351A pulse was preferentially extracted by the arterio-arterial (AA) pathway (61.7% +/- 1.8% extraction; mean +/- SE, N = 4); the arteriovenous (AV) pathway extracted an additional 10%. Extraction by either pathway was reduced by simultaneous perfusion with 10(-5) M unlabeled lisinopril. AA extraction of RAC-X-65 during continuous perfusion was maximal (75% +/- 5%, N = 6) during the first few minutes of perfusion and decreased steadily to 38% +/- 9% by 20 min and to less than 10% by 40 min. AV extraction of RAC-X-65 was negligible. Autoradiography of gills continuously perfused with 125I-351A showed that the radiolabel was concentrated in the respiratory lamellae. The highest grain density was associated with the pillar cells nearest the medial (inner) lamellar margin. Afferent filamental arteries and afferent lamellar arterioles were labeled to a lesser extent. Relatively little label was found on the efferent lamellar arterioles or efferent filamental arteries. 125I-351A binding was not evident in AV vessels. These findings support the hypothesis that the gill is an important site for formation of plasma angiotensin II and they suggest that enzymes associated with mammalian endothelial cells are also common to gill pillar cells.  相似文献   

15.
16.
Blood volume changes in the fetal lung following the onset of ventilation were studied by isotopic measurement of red blood cell and plasma volume in rapidly frozen lungs of ten near term fetal lambs. Total pulmonary blood volumes of fetal lambs ventilated with 3% O2 and 7% CO2 in nitrogen (so that blood gas levels were little changed from fetal values), or with air, were compared with measurements in unventilated lambs. Regional correlations of blood volume and blood flow (measured with isotope-labeled microemboli) within the lungs were also examined. Total pulmonary blood volume averaged 5.6 ml/kg body weight in unventilated fetal lambs and was approximately 43% greated in fetal lambs after 5-20 min of air ventilation, but not significantly different in lambs ventilated with 3% O2 and 7% CO2 in nitrogen. Thus it is ventilation with air, rather than the introduction of gas into the alveoli, which enlarges the fetal pulmonary vascular bed. Regional pulmonary blood volume and blood flow were correlated, though poorly, in air-ventilated lungs, but not in lungs ventilated with 3% O2 and 7% CO2 in nitrogen; this suggests that a common factor may operate to increase both blood flow and blood volume in the fetal lung following the introduction of air.  相似文献   

17.
To confirm the regional differences in vascular pressure vs. flow properties of lung regions that have been documented in zone 2 conditions [pulmonary venous pressure (Ppv) less than alveolar pressure], regional distending pressure vs. flow curves in zone 3 were generated by use of isolated blood-perfused dog lungs (3 right and 5 left lungs). Each lung was kept inflated at constant inflation pressure (approximately 50% of full inflation volume) while radioactively labeled microspheres were injected at different settings of Ppv. To achieve maximal vascular distension, Ppv was increased to approximately 30 cmH2O above alveolar pressure for the first injection. Subsequent injections were made at successively lower Ppv's. The difference between pulmonary arterial pressure and Ppv was kept constant for all injections. As was found in zone 2 conditions, there were differences in the regional distending pressure vs. flow curves among lung regions. To document the regional variability in the curves, the distribution of flow at a regional Ppv of 30 cmH2O above alveolar pressure was analyzed. There was a statistically significant linear gradient in this flow distribution from dorsal to ventral regions of the lungs but no consistent gradient in the caudad to cephalad direction. These results indicate that, even in near-maximally distended vessels, the dorsal regions of isolated perfused dog lungs have lower intrinsic vascular resistance compared with ventral regions.  相似文献   

18.
Hydraulic conductivity of lung venules determined by split-drop technique   总被引:3,自引:0,他引:3  
The split-drop method has been used to determine filtration rate per unit surface area in the single pulmonary venule. In isolated perfused lungs of nine dogs, blood flow was stopped at different vascular pressures. By means of a double-micropuncture technique under stereomicroscopy, an oil drop was injected in a subpleural venule. The oil drop was then split with a solution of albumin (5.6 g/100 ml) in Ringer lactate. As the Ringer-albumin solution filtered, the distance between the menisci of the split oil drop (split-drop length) decreased. The split-drop geometry and the rate of change of split-drop length were recorded. The calculated venular filtration rate per unit surface area related linearly with vascular pressure (P less than 0.05). The slope of the line equaled venular hydraulic conductivity, which averaged 2.9 +/- 0.02 x 10(-7) ml/(cm2.s.cmH2O). Hydraulic conductivity is lower in lung than in systemic venules.  相似文献   

19.
Barman, Scott A., Laryssa L. McCloud, John D. Catravas, andIna C. Ehrhart. Measurement of pulmonary blood flow by fractalanalysis of flow heterogeneity in isolated canine lungs. J. Appl. Physiol. 81(5):2039-2045, 1996.Regional heterogeneity of lung blood flow can bemeasured by analyzing the relative dispersion (RD) of mass(weight)-flow data. Numerous studies have shown that pulmonary bloodflow is fractal in nature, a phenomenon that can be characterized bythe fractal dimension and the RD for the smallest realizable volumeelement (piece size). Although information exists for theapplicability of fractal analysis to pulmonary blood flow in wholeanimal models, little is known in isolated organs. Therefore, thepresent study was done to determine the effect of blood flow rate onthe distribution of pulmonary blood flow in the isolated blood-perfusedcanine lung lobe by using fractal analysis. Four different radiolabeledmicrospheres (141Ce,95Nb,85Sr, and51Cr), each 15 µm in diameter,were injected into the pulmonary lobar artery of isolated canine lunglobes (n = 5) perfused at fourdifferent flow rates ( flow1 = 0.42 ± 0.02 l/min;flow2 = 1.12 ± 0.07 l/min;flow 3 = 2.25 ± 0.17 l/min; flow 4 = 2.59 ± 0.17 l/min), and the pulmonary blood flow distribution was measured. Theresults of the present study indicate that under isogravimetric bloodflow conditions, all regions of horizontally perfused isolated lunglobes received blood flow that was preferentially distributed to themost distal caudal regions of the lobe. Regional pulmonary blood flowin the isolated perfused canine lobe was heterogeneous and fractal innature, as measured by the RD. As flow rates increased, fractal dimension values (averaging 1.22 ± 0.08) remained constant, whereas RD decreased, reflecting more homogeneous blood flowdistribution. At any given blood flow rate, high-flow areas of the lobereceived a proportionally larger amount of regional flow, suggestingthat the degree of pulmonary vascular recruitment may also be spatially related.

  相似文献   

20.
Pulmonary clearance of atrial natriuretic peptide (ANP) was measured by indicator dilution technique in isolated perfused rat lungs with and without ANP clearance receptor (C-receptor) blockade. Approximately 50% of a bolus injection of 125I-ANP was removed during a single pass through the lungs compared with the intravascular marker 14C-dextran. Pulmonary clearance of 125I-ANP was suppressed in a dose-dependent fashion by unlabeled ANP. C-receptor blockade suppressed pulmonary clearance of 125I-ANP to the same degree as unlabeled ANP. High-performance liquid chromatography analysis of the pulmonary venous effluent from lungs treated with C-receptor ligand demonstrated intact 125I-ANP. We conclude that virtually all of the pulmonary vascular uptake of 125I-ANP during a single pass through isolated lungs is secondary to removal by ANP C-receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号