首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We discuss a method for simultaneously estimating the fixed parameters of a generalized linear mixed-effects model and the random-effects distribution of which no parametric assumption is made. In addition, classifying subjects into clusters according to the random regression coefficients is a natural by-product of the proposed method. An alternative approach to maximum-likelihood method, maximum-penalized-likelihood method, is used to avoid estimating “too many” clusters. Consistency and asymptotic normality properties of the estimators are presented. We also provide robust variance estimators of the fixed parameters estimators which remain consistent even in presence of misspecification. The methodology is illustrated by an application to a weight loss study.  相似文献   

2.
3.
Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii) inhomogeneous Markov chain; (iv) hidden Markov model; (v) profile hidden Markov model; (vi) pair hidden Markov model; (vii) generalized hidden Markov model; and (viii) similarity based sequence weighting. The framework includes functionality for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike and Bayesian information criteria (AIC and BIC). The models can be used stand-alone, combined in Bayesian classifiers, or included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently.
This is a PLOS Computational Biology Software Article.
  相似文献   

4.
This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.
This is a PLOS Computational Biology Software Article
  相似文献   

5.
6.
拟似然非线性模型中的置信域:几何法   总被引:2,自引:0,他引:2  
对拟似然非线性模型在欧氏内积实间建立了修改的Bates&Watts几何结构,基于此几何结构,导出了参数和子集系数的与统计曲率有关的三种近似置信域,进一步推广和发展了Hamilton et al.(1982)。Hamilton(1986)和Wei(1994,1998)等人的相应结果。  相似文献   

7.
Nested effects models have been used successfully for learning subcellular networks from high-dimensional perturbation effects that result from RNA interference (RNAi) experiments. Here, we further develop the basic nested effects model using high-content single-cell imaging data from RNAi screens of cultured cells infected with human rhinovirus. RNAi screens with single-cell readouts are becoming increasingly common, and they often reveal high cell-to-cell variation. As a consequence of this cellular heterogeneity, knock-downs result in variable effects among cells and lead to weak average phenotypes on the cell population level. To address this confounding factor in network inference, we explicitly model the stimulation status of a signaling pathway in individual cells. We extend the framework of nested effects models to probabilistic combinatorial knock-downs and propose NEMix, a nested effects mixture model that accounts for unobserved pathway activation. We analyzed the identifiability of NEMix and developed a parameter inference scheme based on the Expectation Maximization algorithm. In an extensive simulation study, we show that NEMix improves learning of pathway structures over classical NEMs significantly in the presence of hidden pathway stimulation. We applied our model to single-cell imaging data from RNAi screens monitoring human rhinovirus infection, where limited infection efficiency of the assay results in uncertain pathway stimulation. Using a subset of genes with known interactions, we show that the inferred NEMix network has high accuracy and outperforms the classical nested effects model without hidden pathway activity. NEMix is implemented as part of the R/Bioconductor package ‘nem’ and available at www.cbg.ethz.ch/software/NEMix.  相似文献   

8.
In his recent paper Liski (1989) derived conditions for superiority of the minimum dispersion estimator over another with respect to the covariance matrix when the parameter vector of a regression model is subject to competing stochastic restrictions. The aim of this note is to provide another necessary and sufficient condition which admits an easier interpretation of superiority related to the covariance matrix criterion.  相似文献   

9.
关于《一类具时滞的神经网络模型的收敛性》的注记   总被引:2,自引:2,他引:2  
本文研究了一类具有时滞的神经网络模型  相似文献   

10.
Le Bras (Theor. Popul. Biol.2, 100–121, 1971) and Rogers (Demography11, 473–481, 1974), in two neglected papers, have generalized to the multisite case the Euler–Lotka renewal equation and demographic characteristics such as age structure and reproductive value. The purpose of this paper is twofold: first, to restate the multisite renewal equation in the matrix context; second, to derive results on age structure, net reproduction rate, generation time, and sensitivities, as generalizations of the one site case. The potential of this approach for population biology is illustrated using a model of a black-headed gullLarus ridibunduspopulation.  相似文献   

11.
People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models—that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model’s percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects’ ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.  相似文献   

12.
GREENLAND and MICKEY (1988) derived a closed-form collapsibility test and confidence interval for IxJxK contingency tables with qualitative factors, and presented a small simulation study of its performance. We show how their method can be extended to regression models linear in the natural parameter of a one-parameter exponential family, in which the parameter of interest is the difference of “crude” and “adjusted” regression coefficients. A simplification of the method yields a generalization of the test for omitted covariates given by HAUSMAN (1978) for ordinary linear regression. We present an application to a study of coffee use and myocardial infarction, and a simulation study which indicates that the simplified test performs adequately in typical epidemiologic settings.  相似文献   

13.
14.
15.
A derivation of the maximum likelihood ratio test for testing no outliers in regression models is given using the method of WETHERILL (1981, pp. 106–107) for estimating the regression parameters. This method is essentially similar to the one outlined in BARNETT and LEWIS (1978, p. 263), although by our detailed derivation it is easier to see that the maximum likelihood estimate of θ of model (3) under the hypothesis that the ith observation in an outlier is the same as that obtained from model (1) when the ith observation is removed.  相似文献   

16.
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.  相似文献   

17.
18.
19.
Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-scale model. Finally, a set of 36 models that had not been considered during the construction of the metamodel was used, as a proof of concept, to extend the metamodel with new biochemical information, and to assess its impact on gap-filling results. The analysis performed on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models were already present in the metabolic database used during the reconstructions process; 2) the presence of inconsistencies in a metabolic database can be propagated to the reconstructed models; 3) there are reactions not manifested as blocked which are active as a consequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are highly dependent on the consistency and completeness of the metamodel or metabolic database used as the reference network. In conclusion the consistency analysis should be applied to metabolic databases in order to detect and fill gaps as well as to detect and remove artifacts and redundant information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号