首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.  相似文献   

2.
3.
Migration of Dictyostelium discoideum slugs results from coordinated movement of their constituent cells. It is generally assumed that each cell contributes to the total motive force of the slug. However, the basic mechanisms by which mechanical forces (traction and resistive forces) are transmitted to the substrate, their magnitude and their location, are largely unknown. In this work, we performed detailed observations of cell movements by fluorescence microscopy using two-dimensional (2D) slugs. We show that 2D slugs share most of the properties of 3D ones. In particular, waves of movement propagate in long 2D slugs, and slug speed correlates with slug length as found in 3D slugs. We also present the first measurements of the distribution of forces exerted by 2D and 3D slugs using the elastic substrate method. Traction forces are mainly exerted in the central region of the slug. The large perpendicular forces around slug boundary and the existence of parallel resistive forces in the tip and/or the tail suggest an important role of the sheath in the transmission of forces to the substrate.  相似文献   

4.
We report the characterization of three-dimensional membrane waves for migrating single and collective cells and describe their propagation using wide-field optical profiling technique with nanometer resolution. We reveal the existence of small and large membrane waves the amplitudes of which are in the range of ∼3–7 nm to ∼16–25 nm respectively, through the cell. For migrating single-cells, the amplitude of these waves is about 30 nm near the cell edge. Two or more different directions of propagation of the membrane nanowaves inside the same cell can be observed. After increasing the migration velocity by BMP-2 treatment, only one wave direction of propagation exists with an increase in the average amplitude (more than 80 nm near the cell edge). Furthermore for collective-cell migration, these membrane nanowaves are attenuated on the leader cells and poor transmission of these nanowaves to follower cells was observed. After BMP-2 treatment, the membrane nanowaves are transmitted from the leader cell to several rows of follower cells. Surprisingly, the vast majority of the observed membrane nanowaves is shared between the adjacent cells. These results give a new view on how single and collective-cells modulate their motility. This work has significant implications for the therapeutic use of BMPs for the regeneration of skin tissue.  相似文献   

5.
Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase–positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow–dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.  相似文献   

6.
7.
Cell?Ccell adhesion is essential for biological development: cells migrate to their target sites, where cell?Ccell adhesion enables them to aggregate and form tissues. Here, we extend analysis of the model of cell migration proposed by Anguige and Schmeiser (J. Math. Biol. 58(3):395?C427, 2009) that incorporates both cell?Ccell adhesion and volume filling. The stochastic space-jump model is compared to two deterministic counterparts (a system of stochastic mean equations and a non-linear partial differential equation), and it is shown that the results of the deterministic systems are, in general, qualitatively similar to the mean behaviour of multiple stochastic simulations. However, individual stochastic simulations can give rise to behaviour that varies significantly from that of the mean. In particular, individual simulations might admit cell clustering when the mean behaviour does not. We also investigate the potential of this model to display behaviour predicted by the differential adhesion hypothesis by incorporating a second cell species, and present a novel approach for implementing models of cell migration on a growing domain.  相似文献   

8.
The ability of cells to coordinately migrate in groups is crucial to enable them to travel long distances during embryonic development, wound healing and tumorigenesis, but the fundamental mechanisms underlying intercellular coordination during collective cell migration remain elusive despite considerable research efforts. A novel analytical framework is introduced here to explicitly detect and quantify cell clusters that move coordinately in a monolayer. The analysis combines and associates vast amount of spatiotemporal data across multiple experiments into transparent quantitative measures to report the emergence of new modes of organized behavior during collective migration of tumor and epithelial cells in wound healing assays. First, we discovered the emergence of a wave of coordinated migration propagating backward from the wound front, which reflects formation of clusters of coordinately migrating cells that are generated further away from the wound edge and disintegrate close to the advancing front. This wave emerges in both normal and tumor cells, and is amplified by Met activation with hepatocyte growth factor/scatter factor. Second, Met activation was found to induce coinciding waves of cellular acceleration and stretching, which in turn trigger the emergence of a backward propagating wave of directional migration with about an hour phase lag. Assessments of the relations between the waves revealed that amplified coordinated migration is associated with the emergence of directional migration. Taken together, our data and simplified modeling-based assessments suggest that increased velocity leads to enhanced coordination: higher motility arises due to acceleration and stretching that seems to increase directionality by temporarily diminishing the velocity components orthogonal to the direction defined by the monolayer geometry. Spatial and temporal accumulation of directionality thus defines coordination. The findings offer new insight and suggest a basic cellular mechanism for long-term cell guidance and intercellular communication during collective cell migration.  相似文献   

9.
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.  相似文献   

10.
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.  相似文献   

11.
Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.  相似文献   

12.
13.
We find how collective migration emerges from mechanical information transfer between cells. Local alignment of cell velocity and mechanical stress orientation—a phenomenon dubbed “plithotaxis”—plays a crucial role in inducing coordinated migration. Leader cells at the monolayer edge better align velocity and stress to migrate faster toward the open space. Local seeds of enhanced motion then generate stress on neighboring cells to guide their migration. Stress-induced motion propagates into the monolayer as well as along the monolayer boundary to generate increasingly larger clusters of coordinately migrating cells that move faster with enhanced alignment of velocity and stress. Together, our analysis provides a model of long-range mechanical communication between cells, in which plithotaxis translates local mechanical fluctuations into globally collective migration of entire tissues.  相似文献   

14.
Keratinocyte migration on a two-dimensional substrate can be split into four distinct phases: cell extension, attachment, contraction, and detachment. It is preceded by polarization of the cell which leads to a functional asymmetry observable by the formation of a leading lamella. In this work variation of fibronectin coating concentrations and competitive inhibition with RGD peptides are used to investigate the dependency of polarization, migration, lamella dynamics, and ruffling on substrate adhesiveness. Looking at migrating human epidermal keratinocytes with a well-defined polarity we find that a fibronectin-coating concentration of 10 μg/cm2 stimulates migration and ruffling speed twofold, whereas protrusion speed increases only by 20% (compared to 2.5 μg/cm2 fibronectin). Nonpolar cells show a constant migration and ruffling speed independent of the amount of fibronectin. In contrast protrusion speeds of polar and nonpolar cells are equal. Treatment of cells on 10 μg/cm2 fibronectin with 1 mg/ml GRGDS reduces the characteristic migration, protrusion, and ruffling speed of polar cells which corresponds to lowering the effective coating concentration to under 5 μg/cm2. The probability of being polarized (quantified by a polarity index) increases with increasing fibronectin concentration. However, addition of soluble RGD on 10 μg/cm2 fibronectin does not simply reduce the polarity index like one would expect from the corresponding changes in the other motility parameters, but it remains unchanged.  相似文献   

15.
Aging is characterized by a gradual and continuous loss of physiological functions and responses particularly marked in the central nervous system. Reactive oxygen species (ROS) can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since proteins are the major components of biological systems and regulate multiple cellular pathways, oxidative damage of key proteins are considered to be the principal molecular mechanisms leading to age-related deficits. Recent evidences support the notion that a decrease of energy metabolism in the brain contribute to neuronal loss and cognitive decline associated with aging. In the present study we identified selective protein targets which are oxidized in aged rats compared with adult rats. Most of the oxidatively modified proteins we found in the present study are key proteins involved in energy metabolism and ATP production. Oxidative modification of these proteins was associated with decreased enzyme activities. In addition, we also found decreased levels of thiol reducing system. Our study demonstrated that oxidative damage to specific proteins impairs energy metabolism and ATP production thus contributing to shift neuronal cells towards a more oxidized environment which ultimately might compromise multiple neuronal functions. These results further confirm that increased protein oxidation coupled with decreased reducing systems are characteristic hallmarks of aging and aging-related degenerative processes.  相似文献   

16.
The motivation of this work stems from two critical experimental observations associated with corneal angiogenesis: (1) angiogenesis will not succeed without endothelial cell proliferation, and (2) proliferation mainly occurs at the leading edge of developing sprouts (Sholley et al., Lab. Invest. 51:624–634, 1984). To discover the underlying mechanisms of these phenomena, we develop a cell-based mathematical model that integrates a mechanical model of elongation with a biochemical model of cell phenotype variation regulated by angiopoietins within a developing sprout. This model allows for a detailed study of the relative roles of endothelial cell migration, proliferation, and maturation. The model is validated by quantitatively comparing its predictions with data derived from corneal angiogenesis experiments. We conclude that cell elasticity and cell-to-cell adhesion allow only limited sprout extension in the absence of proliferation, and the maturation process combined with bioavailability of VEGF can explain the localization of proliferation to the leading edge. We also use this model to investigate the effects of X-ray irradiation, Ang-2 inhibition, and extracellular matrix anisotropy on sprout morphology and extension.  相似文献   

17.
Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis.  相似文献   

18.
Abstract. The effects of migration and culmination on patterning of presumptive (prespore and prestalk) cells and mature (spore and stalk) cells of D. discoideum were investigated. The ratio of prespore to total cells, as determined by staining with fluorescein-conjugated antispore globulin, was constant (77%) up until 8 h of slug migration, but then decreased to a level (64%) which thereafter remained unchanged during migration. Cells which lost prespore antigen during migration were located in the posterior (prespore) part next to the agar surface.
Upon induction of culmination, however, the ratio of prespore cells quickly increased to the normal level (77%) within 1–2 h. During the transition between migration and culmination prestalk and prespore cells were considerably intermixed within the cell mass, before the normal prestalk-prespore pattern was reestablished at the preculmination (Mexican hat) stage. Spore: stalk ratios within fruiting bodies were normal irrespective of the lengths of slug migration.  相似文献   

19.
20.
Repeat proteins have unique elongated structures that, unlike globular proteins, are quite modular. Despite their simple one-dimensional structure, repeat proteins exhibit intricate folding behavior with a complexity similar to that of globular proteins. Therefore, repeat proteins allow one to quantify fundamental aspects of the biophysics of protein folding. One important feature of repeat proteins is the interfaces between the repeating units. In particular, the distribution of stabilities within and between the repeats was previously suggested to affect their folding characteristics. In this study, we explore how the interface affects folding kinetics and cooperativity by investigating two families of repeat proteins, namely, the Ankyrin and tetratricopeptide repeat proteins, which differ in the number of interfacial contacts that are formed between their units as well as in their folding behavior. By using simple topology-based models, we show that modulating the energetic strength of the interface relative to that of the repeat itself can drastically change the protein stability, folding rate, and cooperativity. By further dissecting the interfacial contacts into several subsets, we isolated the effects of each of these groups on folding kinetics. Our study highlights the importance of interface connectivity in determining the folding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号