首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Cell proliferation within a fluid-filled porous tissue-engineering scaffold depends on a sensitive choice of pore geometry and flow rates: regions of high curvature encourage cell proliferation, while a critical flow rate is required to promote growth for certain cell types. When the flow rate is too slow, the nutrient supply is limited; when it is too fast, cells may be damaged by the high fluid shear stress. As a result, determining appropriate tissue-engineering-construct geometries and operating regimes poses a significant challenge that cannot be addressed by experimentation alone. In this paper, we present a mathematical theory for the fluid flow within a pore of a tissue-engineering scaffold, which is coupled to the growth of cells on the pore walls. We exploit the slenderness of a pore that is typical in such a scenario, to derive a reduced model that enables a comprehensive analysis of the system to be performed. We derive analytical solutions in a particular case of a nearly piecewise constant growth law and compare these with numerical solutions of the reduced model. Qualitative comparisons of tissue morphologies predicted by our model, with those observed experimentally, are also made. We demonstrate how the simplified system may be used to make predictions on the design of a tissue-engineering scaffold and the appropriate operating regime that ensures a desired level of tissue growth.

  相似文献   

2.
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly‐L ‐lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre‐requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection‐diffusion‐attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large‐scale bioreactors. Biotechnol. Bioeng. 2013; 110: 1221–1230. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
This article investigates heterogeneous proliferation within a seeded three-dimensional scaffold structure with the purpose of improving protocols for engineered tissue growth. A simple mathematical model is developed to examine the very strong interaction between evolving oxygen profiles and cell distributions within cartilaginous constructs. A comparison between predictions based on the model and experimental evidence is given for both spatial and temporal evolution of the oxygen tension and cell number density, showing that behaviour for the first 14 days can be explained well by the mathematical model. The dependency of the cellular proliferation rate on the oxygen tension is examined and shown to be similar in size to previous work but linear in form. The results show that cell-scaffold constructs that rely solely on diffusion for their supply of nutrients will inevitably produce proliferation-dominated regions near the outer edge of the scaffold in situations when the cell number density and oxygen consumption rate exceed a critical level. Possible strategies for reducing such non-uniform proliferation, including the conventional methods of enhancing oxygen transport, are outlined based on the model predictions.  相似文献   

4.
In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from $\mu $ CT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo.  相似文献   

5.
The supply of oxygen to proliferating cells within a scaffold is a key factor for the successful building of new tissue in soft tissue engineering applications. A recent in vivo model, where an arteriovenous loop is placed in a scaffold, allows a vascularising network to form within a scaffold, establishing an oxygen source within, rather than external, to the scaffold. A one-dimensional model of oxygen concentration, cell proliferation and cell migration inside such a vascularising scaffold is developed and investigated. In addition, a vascularisation model is presented, which supports a vascularisation front which moves at a constant speed. The effects of vascular growth, homogenous and heterogenous seeding, diffusion of cells and critical hypoxic oxygen concentration are considered. For homogenous seeding, a relationship between the speed of the vascular front and a parameter defining the rate of oxygen diffusion relative to the rate of oxygen consumption determines whether a hypoxic region exists at some time. In particular, an estimate of the length of time that a fixed point in the scaffold will remain under hypoxic conditions is determined. For heterogenous seeding, a Fisher-like travelling wave of cells is established behind the vascular front. These findings provide a fundamental understanding of the important interplay between the parameters and allows for a theoretical assessment of a seeding strategy in a vascularising scaffold.  相似文献   

6.
The shear stresses in printed scaffold systems for tissue engineering depend on the flow properties and void volume in the scaffold. In this work, computational fluid dynamics (CFD) is used to simulate flow fields within porous scaffolds used for cell growth. From these models the shear stresses acting on the scaffold fibres are calculated. The results led to the conclusion that the Darcian (k 1) permeability constant is a good predictor for the shear stresses in scaffold systems for tissue engineering. This permeability constant is easy to calculate from the distance between and thickness of the fibres used in a 3D printed scaffold. As a consequence computational effort and specialists for CFD can be circumvented by using this permeability constant to predict the shear stresses. If the permeability constant is below a critical value, cell growth within the specific scaffold design may cause a significant increase in shear stress. Such a design should therefore be avoided when the shear stress experienced by the cells should remain in the same order of magnitude.  相似文献   

7.
Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213–2221, 2006, 32(11):2775–2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213–2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome.  相似文献   

8.
Achieving successful vascularization remains one of the main problems in bone tissue engineering. After scaffold implantation, the growth of capillaries into the porous construct may be too slow to provide adequate nutrients to the cells in the scaffold interior and this inhibits tissue formation in the scaffold core. Often, prior to implantation, a controlled cell culture environment is used to stimulate cell proliferation and, once in place, the mechanical environment acting on the tissue construct is determined by the loading conditions at the implantation site. To what extent do cell seeding conditions and the construct loading environment have an effect on scaffold vascularization and tissue growth? In this study, a mechano-biological model for tissue differentiation and blood vessel growth was used to determine the influence of cell seeding on vascular network development and tissue growth inside a regular-structured bone scaffold under different loading conditions. It is predicted that increasing the number of cells seeded homogeneously reduces the rate of vascularization and the maximum penetration of the vascular network, which in turn reduces bone tissue formation. The seeding of cells in the periphery of the scaffold was predicted to be beneficial for vascularization and therefore for bone growth; however, tissue formation occurred more slowly during the first weeks after implantation compared to homogeneous seeding. Low levels of mechanical loading stimulated bone formation while high levels of loading inhibited bone formation and capillary growth. This study demonstrates the feasibility of computational design approaches for bone tissue engineering.  相似文献   

9.
Shear stress is an important physical factor that regulates proliferation, migration, and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging readouts of the flow field.  相似文献   

10.
Lemon G  Howard D  Rose FR  King JR 《Bio Systems》2011,103(3):372-383
This paper presents a simulation modelling framework to study the growth of blood vessels and cells through a porous tissue engineering scaffold. The model simulates the migration of capillaries and the formation of a vascular network through a single pore of a tissue engineering scaffold when it is embedded in living tissue. The model also describes how the flow of blood through the network changes as growth proceeds. Results are given for how the different strategies of seeding the pore with cells affects the extent of vascularisation. Also simulations are made to compare results where the values of different model parameters are varied such as the pore dimensions, the density of endothelial cells seeded into the pore, and the release rate of growth factor from the scaffold into the pore. The modelling framework described in this paper is useful for exploring experimental strategies for producing well-vascularised tissue engineered constructs, and is therefore potentially important to the field of regenerative medicine.  相似文献   

11.
12.
Media perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional (3-D) tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. Local shear stresses are a function of media flow rate and dynamic viscosity, bioreactor configuration, and porous scaffold microarchitecture. We have used the Lattice-Boltzmann method to simulate the flow conditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomography imaging was used to define the scaffold microarchitecture for the simulations, which produce a 3-D fluid velocity field throughout the scaffold porosity. Shear stresses were estimated at various media flow rates by multiplying the symmetric part of the gradient of the velocity field by the dynamic viscosity of the cell culture media. The shear stress algorithm was validated by modeling flow between infinite parallel plates and comparing the calculated shear stress distribution to the analytical solution. Relating the simulation results to perfusion experiments, an average surface shear stress of 5x10(-5)Pa was found to correspond to increased cell proliferation, while higher shear stresses were associated with upregulation of bone marker genes. This modeling approach can be used to compare results obtained for different perfusion bioreactor systems or different scaffold microarchitectures and may allow specific shear stresses to be determined that optimize the amount, type, or distribution of in vitro tissue growth.  相似文献   

13.
Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one.  相似文献   

14.
Current tissue engineering technologies involve the seeding of cells on porous scaffolds, within which the cells can proliferate and differentiate, when cultured in bioreactors. The flow of culture media through the scaffolds generates stresses that are important for both cell differentiation and cell growth. A recent study [Appl. Phys. Lett. 97 (2010), 024101] showed that flow-induced stresses inside highly porous and randomly structured scaffolds follow a three-point gamma probability density function (p.d.f.). The goal of the present study is to further investigate whether the same p.d.f. can also describe the distribution of stresses in structured porous scaffolds, what is the range of scaffold porosity for which the distribution is valid, and what is the physical reason for such behavior. To do that, the p.d.f. of flow-induced stresses in different scaffold geometries were calculated via flow dynamics simulations. It was found that the direction of flow relative to the internal architecture of the scaffolds is important for stress distributions. The stress distributions follow a common distribution within statistically acceptable accuracy, when the flow direction does not coincide with the direction of internal structural elements of the scaffold.  相似文献   

15.
In situ vascular tissue engineering (TE) aims at regenerating vessels using implanted synthetic scaffolds. An envisioned strategy is to capture and differentiate progenitor cells from the bloodstream into the porous scaffold to initiate tissue formation. Among these cells are the endothelial colonies forming cells (ECFCs) that can differentiate into endothelial cells and transdifferentiate into smooth muscle cells under biochemical stimulation. The influence of mechanical stimulation is unknown, but relevant for in situ vascular TE because the cells perceive a change in mechanical environment when captured inside the scaffold, where they are shielded from blood flow induced shear stresses. Here we investigate the effects of substrate stiffness as one of the environmental mechanical cues to control ECFC fate within scaffolds. ECFCs were seeded on soft (3.58±0.90 kPa), intermediate (21.59±2.91 kPa), and stiff (93.75±18.36 kPa) fibronectin-coated polyacrylamide gels, as well as on glass controls, and compared to peripheral blood mononuclear cells (PBMC). Cell behavior was analyzed in terms of adhesion (vinculin staining), proliferation (BrdU), phenotype (CD31, αSMA staining, and flow cytometry), and collagen production (col I, III, and IV). While ECFCs adhesion and proliferation increased with substrate stiffness, no change in phenotype was observed. The cells produced no collagen type I, but abundant amounts of collagen type III and IV, albeit in a stiffness-dependent organization. PBMCs did not adhere to the gels, but they did adhere to glass, where they expressed CD31 and collagen type III. Addition mechanical cues, such as cyclic strains, should be studied to further investigate the effect of the mechanical environment on captured circulating cells for in situ TE purposes.  相似文献   

16.
Novel tissue‐culture bioreactors employ flow‐induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three‐dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear‐stress values within the physiological range of those naturally sensed by vascular cells (1–10 dyne/cm2), and will thereby provide suitable conditions for vascular tissue‐engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell‐layer thicknesses of 0, 50, 75, 100, and 125 µm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear‐stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell‐layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in‐depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. Biotechnol. Bioeng. 2010; 105: 645–654. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth.  相似文献   

18.
The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth.  相似文献   

19.
Cartilage tissue repair procedures currently under development aim to create a construct in which patient-derived cells are seeded and expanded ex vivo before implantation back into the body. The key challenge is producing physiologically realistic constructs that mimic real tissue structure and function. One option with vast potential is to print strands of material in a 3D structure called a scaffold that imitates the real tissue structure; the strands are composed of gel seeded with cells and so provide a template for cartilaginous tissue growth. The scaffold is placed in the construct and pumped with nutrient-rich culture medium to supply nutrients to the cells and remove waste products, thus promoting tissue growth.In this paper we use asymptotic homogenization to determine the effective flow and transport properties of such a printed scaffold system. These properties are used to predict the distribution of nutrient/waste products through the construct, and to specify design criteria for the scaffold that will optimize the growth of functional tissue.  相似文献   

20.
Bone tissue regeneration using scaffolds is receiving an increasing interest in orthopedic surgery and tissue engineering applications. In this study, we present the geometrical characterization of a specific family of scaffolds based on a face cubic centered (FCC) arrangement of empty pores leading to analytical formulae of porosity and specific surface. The effective behavior of those scaffolds, in terms of mechanical properties and permeability, is evaluated through the asymptotic homogenization theory applied to a representative volume element identified with the unit cell FCC. Bone growth into the scaffold is estimated by means of a phenomenological model that considers a macroscopic effective stress as the mechanical stimulus that regulates bone formation. Cell migration within the scaffold is modeled as a diffusion process based on Fick's law which allows us to estimate the cell invasion into the scaffold microstructure. The proposed model considers that bone growth velocity is proportional to the concentration of cells and regulated by the mechanical stimulus. This model allows us to explore what happens within the scaffold, the surrounding bone and their interaction. The mathematical model has been numerically implemented and qualitatively compared with previous experimental results found in the literature for a scaffold implanted in the femoral condyle of a rabbit. Specifically, the model predicts around 19 and 23% of bone regeneration for non-grafted and grafted scaffolds, respectively, both with an initial porosity of 76%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号