首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phenothiazines (trifluoperazine, chlorpromazine, methochlorpromazine, and imipramine) on Ca2+ fluxes in light and heavy sarcoplasmic reticulum (SR) isolated from rabbit fast-twitch skeletal muscle was investigated. These drugs inhibited Ca2+ loading and (Ca2+,Mg2+)-ATPase activity, but had no effect on unidirectional Ca2+ efflux from vesicles loaded either actively or passively with Ca2+. Chlorpromazine, which is membrane permeable, and its quaternary analog, methochlorpromazine, which is membrane impermeable, gave identical results. It is concluded that (a) the enhancement of net Ca2+ release by phenothiazines is due to inhibition of Ca2+ influx mediated by the Ca2+ pump rather than to the opening of a Ca2+ channel; and (b) phenothiazines act at the outer (myoplasmic) face of the SR membrane.  相似文献   

2.
The initial rate of oxalate-facilitated Ca2+ uptake by skeletal microsomes depends on both Ca2+ and oxalate concentrations in the medium. The apparent Km for Ca2+ increases with increasing oxalate concentration, indicating that Ca2+ uptake can involve a carrier-mediated transport system.  相似文献   

3.
Sarcoplasmic reticulum, isolated from canine cardiac muscle, was phosphorylated in the presence of exogenous cAMP-dependent protein kinase or calmodulin. This phosphorylation has been shown previously to activate sarcoplasmic reticulum calcium uptake (LePeuch et al. (1979) Biochemistry18, 5150–5157). Calmodulin appeared to activate an endogenous protein kinase present in sarcoplasmic reticulum membranes. The incorporation of phosphate increased with time. However, once all the ATP was consumed, the level of phosphorylated protein started to decrease due to the action of an endogenous protein phosphatase. Dephosphorylation occurred even when the level of phosphorylated sarcoplasmic reticulum remained constant at high ATP concentrations. The phosphorylation of sarcoplasmic reticulum in the presence of calmodulin, increased as the pH was increased from pH 5.5 to 8.5. This phosphorylation was only inhibited by KCl concentrations greater than 100 mm. The apparent Km of cAMP-dependent protein kinase for ATP was 5.2 ± 0.2 × 10?5m, and of the calmodulin-dependent protein kinase for ATP was 3.67 ± 0.29 × 10?5m. Phosphorylation was maximally activated by 5–10 mm MgCl2; higher MgCl2 concentrations inhibited this phosphorylation. Thus the calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum could be maximally activated at sarcoplasmic concentrations of K+, Mg2+, and ATP. The calmodulindependent phosphorylation was half-maximally activated at Ca2+ concentrations that were significantly greater than those required to promote the formation of the sarcoplasmic reticulum Ca-activated ATPase phosphoprotein intermediate. Thus at sarcoplasmic Ca2+ concentrations that might be expected during systole, the sarcoplasmic reticulum calcium pump would be fully activated before any significant calmodul-independent sarcoplasmic reticulum phosphorylation occurred. However, under certain pathological conditions when the sarcoplasmic Ca2+ becomes elevated (e.g., in ischemia) the kinase could be activated so that the sarcoplasmic reticulum would be phosphorylated and calcium uptake augmented. Thus, the calmodulin-dependent protein kinase may only function when the heart needs to rescue itself from a possibly fatal calcium overload.  相似文献   

4.
Calcium transport by isolated sarcoplasmic reticulum vesicles has been measured by means of a calcium-stat method, utilizing a calcium-specific electrode as sensor. Free calcium ion levels were maintained between 10?7 and 10?4m during assay, without the use of calcium buffering agents. The method may be used at temperatures between 5 and 40°C and in the pH range 5.0 to 8.5. Measured initial rates of ATP-dependent calcium transport at 10?5m free calcium, 20°C, pH 7.2, and 100 μg sarcoplasmic reticulum protein per milliliter were between 1.5 and 2.3 μmol min?1 mg?1, with a coefficient of variation of 2%.  相似文献   

5.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

6.
Fractionation of sarcoplasmic reticulum vesicles from rabbit skeletal muscle was performed by solubilization of the vesicles in the presence of deoxycholate, followed by sucrose density gradient centrifugation and gel filtration chromatography. This procedure permitted the isolation of essentially pure Ca2+-ATPase; this enzyme showed ATPase as well as acylphosphatase activity, both activities being clearly enhanced by deoxycholate. The acylphosphatase activity of the purified Ca2+-ATPase was characterized with regard to some kinetic properties, such as pH, Mg2+, Ca2+, and deoxycholate dependence, and substrate affinity, determined in the presence of acetylphosphate, succinylphosphate, carbamylphosphate, and benzoylphosphate; in addition, the stability of both activities was checked in time-course experiments. The main similarities between the two activities, such as the Mg2+ requirement, the deoxycholate activation, and the pH dependence, together with the competitive inhibition of the benzoylphosphatase activity by ATP, the inhibition of both activities by tris(bathophenanthroline)-Fe2+, and the relief of this inhibitory effect by carbonylcyanide-4-trifluoromethoxyphenyl hydrazone support the hypothesis that acylphosphatase and ATPase activities of sarcoplasmic reticulum vesicles reside in the same active site of the enzyme. With regard to possible relationships between acylphosphatase activity of the purified Ca2+-ATPase and “soluble” acylphosphatase present in the 100,000g supernatant fraction, comparison of some kinetic and structural parameters indicate that these two activities are supported by quite different enzymes.  相似文献   

7.
The relative rates of synthesis and breakdown of myosin heavy and light chains were studied in primary cell cultures of embryonic chick cardiac and skeletal muscle. Measurements were made after 4 days in culture, at which time both skeletal and cardiac cultures were differentiated and contracted spontaneously. Following a 4-hr pulse of radioactive leucine, myosin and its heavy and light chains were extracted to 90% or greater purity and the specific activities of the proteins were determined. In cardiac muscle, myosin heavy chains were synthesized approximately 1.6 times the rate of myosin light chains, and in skeletal muscle, heavy chains were synthesized at approximately 1.4 times the rate of light chains. Relative rates of degradation of muscle proteins were determined using a dual-isotope technique. In general, the soluble and myofibrillar proteins of both types of muscle had decay rates proportional to their molecular weights (larger proteins generally had higher decay rates) based on analyses utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A notable exception to this general rule was myosin heavy chains, which had decay rates only slightly higher than the myosin light chains. Direct measurements on purified proteins indicated that the heavy chains of myosin were turning over at a slightly greater rate (approximately 20%) than the myosin light chains in both cardiac and skeletal muscle. The reasons for the apparent discrepancy between these measurements of myosin heavy and light chain synthesis and degradation are discussed.  相似文献   

8.
A technique of purification of sarcoplasmic reticulum was devised through selective loading of the vesicular material with calcium phosphate. In presence of amount of disposable calcium lower than the maximum accumulation capacity of the total vesicular population, we have defined conditions of loading which allow the selection by centrifugation. The results described in this work show that about 30% of the starting material can be isolated as a vesicular population homogenous on the stand of the amount of accumulated cation. The purification is achieved by the removal of calcium by dissociation of the precipitate. Freeze-fracture electron microscopy studies show that the more active fraction when freed of calcium phosphate precipitate displays smooth convex (EFs) and particulated concave (PFp) fracture planes. It has been verified that the purification described in this work allows the removal of all the inactive material. The rate of calcium uptake of the selected preparation is about twice as large as that displayed by the starting material. The structural homogeneity of this material and the increase in the activity are good evidence for the purity of the selected sarcoplasmic reticulum vesicles.  相似文献   

9.
The main purpose of this work was to explore the conditions allowing the most efficient reconstitution of the sarcoplasmic reticulum calcium transporting system, displaying the same morphology as in the corresponding native membranes. The method used was based on the centrifugation of the solubilized-in-Triton X-100 Ca2+-stimulated adenosine triphosphatase through a sucrose gradient containing Tween 80 and preformed small lipid vesicles. The morphology of the reconstituted material was followed by freeze-fracture electron microscopy. The results presented in this paper show that, under appropriate experimental conditions, a large part of the reconstituted material appears to be very similar to the native sarcoplasmic reticulum.  相似文献   

10.
γ-Aminobutyric acid selectively increased Cl? permeability in isolated strips of crayfish abdominal muscle. Muscle fibers incubated in VAn Harreveld's solution at room temperature took up 36Cl? to the extent of 700 ml/kg wet weight with a halftime of 2.5 min. During 15-s incubations, the control 36Cl? uptake space was 131 ± 4 ml/kg (n = 60) and this was significantly increased by γ-aminobutyric acid at 200 μM or higher concentrations to 177 ± 4 ml/kg (n = 48, P < 0.05). This effect was specific for chloride since γ-aminobutyric acid did not increase the uptake by crayfish muscle of radioactive sucrose, inositol, or propionate. γ-Aminobutyric acid stimulation of 36Cl? uptake is mediated by receptor-ionophore function since the process shows pharmacological properties virtually identical to those observed by electrophysiological techniques. The γ-aminobutyric acid stimulation of Cl? permeability is dose dependent with 50% of the maximal effect at 40 μM γ-aminobutyric acid and the dose vs. response curve is somewhat sigmoid. The γ-aminobutyric acid agonist muscimol causes the same maximal effect on Cl? uptake as γ-aminobutyric acid, but acts at 5-fold lower concentrations, i.e. is more potent. However, the partial agonist γ-amino, β-hydroxybutyric acid produced little or no stimulation of 36Cl? flux. The response to γ-aminobutyric acid was blocked by 2 mM β-guanidinopropionate or γ-guanidinobutyrate, 0.5 mM bicuculline, and 10 μM picrotoxinin. Picrotoxinin inhibition was dose dependent with 50% inhibition occurring at 4 μM. Antagonists did not affect control 36Cl? uptake. These results confirm electrophysiological observations that the postsynaptic response to the inhibitory neurotransmitter γ-aminobutyric acid involves a rapid increase in membrane permeability to Cl?  相似文献   

11.
Abnormal collagen synthesis in skeletal muscle of dystrophic chicken   总被引:1,自引:0,他引:1  
Specific molecular properties of skeletal muscle collagens from normal and dystrophic chickens have been compared. When dystrophy develops in skeletal muscle tissue there was an increase in the amount of total collagen and an increased proportion of Type III collagen in the tissue. The results from the cross-link study as well as the analysis of the solubility of collagen showed that skeletal muscle of dystrophic chicken produces more immature collagen fibers compared to normal chicken. These findings strongly indicate an important role of collagen in the pathogenesis of the extensive connective tissue prolipheration characteristic of muscular dystrophies.  相似文献   

12.
The glucose transporter in the plasma membrane of rat skeletal muscle has been identified by two approaches. In one, the transporter was detected as the polypeptide that was differentially labeled by photolysis with [3H]cytochalasin B in the presence of l- and d-glucose. [3H]Cytochalasin B is a high-affinity ligand for the transporter that is displaced by d-glucose. In the other, the transporter was detected by means of its reaction with rabbit antibodies against the purified glucose transporter from human erythrocytes. By both procedures, the transporter was found to be a polypeptide with a mobility corresponding to a molecular weight of 45,000–50,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
Orientation of skeletal muscle actin in strong magnetic fields   总被引:2,自引:0,他引:2  
J Torbet  M J Dickens 《FEBS letters》1984,173(2):403-406
Measurement of birefringence is used to follow actin filament and paracrystal formation in a strong magnetic field. Both F-actin and paracrystals orientate parallel to the field. This confirms that globular proteins arranged in filamentous assemblies can orientate in magnetic fields. This is consistent with the alpha-helical component of the actin subunits being approximately aligned along the actin filament.  相似文献   

14.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

15.
During myogenesis in vitro the actin-binding protein filamin is present in myoblasts and early fused cells and is associated with α-actinin-containing filament bundles, as judged by double immunofluorescence using antibodies specific for these two proteins. Approximately one day after cell fusion, yet before the development of a-actinin-containing Z line striations, filamin disappears from the cells. Later in myogenesis, several days after the appearance of α-actinin-containing Z line striations, filamin reappears and accumulates in the cells. Double immunofluorescence with antibodies to filamin and vimentin (or desmin) reveals that the newly appearing filamin localizes now to the myofibril Z line and is visible there shortly before vimentin or desmin becomes associated with the Z line. Immunofluorescent localization of filamin in isolated chicken skeletal myofibrils and Z disc sheets indicates that filamin has the same distribution as desmin and vimentin; it surrounds each myofibril Z disc and forms honeycomb-like networks within each Z plane of the muscle fiber. Filamin may thus be involved in the transition of desmin and vimentin to the Z disc. Analysis of whole-cell extracts by SDS-polyacrylamide gel electrophoresis and by immunoautoradiography shows that filamin is present in myoblasts and in myotubes early after cell fusion. Concomitant with the absence of filamin fluorescence during the subsequent few days of myogenesis, the quantity of filamin is markedly reduced. During this time, metabolic pulse-labeling with 35S-methionine reveals that the synthetic rate of filamin is also markedly reduced. As filamin fluorescence appears at the Z line, the quantity of filamin and its synthetic rate both increase. The removal of filamin from the cells suggests that filamin either may not be required, or may actually interfere with a necessary process, during the early stages of sarcomere morphogenesis. These results also indicate that the periphery of the Z disc is assembled in at least two distinct steps during myogenesis.  相似文献   

16.
Transferrin or a transferrin-like protein, with ability to stimulate myogenesis and terminal differentiation in vitro, is found in fast chicken muscle during embryonic development. After hatching, however, transferrin is no longer accumulated or is only weakly accumulated by fast muscles like the pectoralis major and the posterior latissimus dorsi but continues to be accumulated by slow muscles like the anterior latissimus dorsi. In congenic lines of chickens bearing the gene for muscular dystrophy, however, adult fast muscles do not lose the ability to accumulate transferrin. While transferrin is found selectively in adult normal and dystrophic muscle it does not appear to be synthesized by muscle cells. Immunocytochemical localization shows that transferrin is accumulated not so much by muscle fibers as it is by single cells in the muscle interstitial space. The relationship between transferrin presence and growth patterns in adult skeletal muscle is not currently understood but evidence suggests that transferrin stimulation of myogenesis observed in vitro may be mediated in vivo by non-muscle cells dwelling within the muscle interstitial space. These cells may act as transferrin-uptake sources for subsequent satellite cell stimulation.  相似文献   

17.
Comparative one-dimensional peptide maps were prepared by the electrophoresis of digests derived from treatment of desmins with Ca2+-activated muscle protease, trypsin, Staphylococcusaureus V8 protease, and cyanogen bromide. Desmins from adult mammalian skeletal and smooth muscles were very similar. Avian smooth muscle desmin, although homologous with respect to many peptides, was different from the mammalian smooth and skeletal desmins. The amino acid compositions of the three desmins were quite similar.  相似文献   

18.
The effects of streptozotocin-induced diabetes mellitus upon mitochondria from rat skeletal muscle and kidney were examined. The rate of amino acid incorporation in vitro by isolated skeletal muscle mitochondria from diabetic animals was decreased by 50–60% from control values. Treatment of diabetic animals with insulin lowered blood glucose levels to control values and restored the rate of muscle mitochondrial protein synthesis in vitro to control levels. The rates of skeletal muscle mitochondrial protein synthesis were also decreased 23–27% by a 2-day fast. Comparison of the translation products synthesized by isolated muscle mitochondria from control and diabetic rats by dodecyl sulfate polyacrylamide-gel electrophoresis revealed a uniform decrease in the synthesis of all polypeptides. Aurintricarboxylic acid and pactamycin, inhibitors of chain initiation, blocked protein synthesis to a greater extent in muscle mitochondria from control as compared to diabetic animals suggesting that mitochondria from diabetics are unable to initiate protein synthesis at a rate comparable to control. Phenotypic changes observed in diabetic muscle mitochondria included a 36% decrease in the content of cytochromes aa3 and a 27% decrease in cytochrome b, both established as containing mitochondrial translation products in lower eucaryotes. State 3 respiration with glutamate as substrate decreased by 27% and uncoupler-stimulated respiration decreased by 23% in the diabetic mitochondria. By contrast, the specific activities of NADH and succinate dehydrogenases, established as products of cytoplasmic protein synthesis in lower eucaryotes, were not decreased in skeletal muscle mitochondria from the diabetic animals. These results suggest that the considerable muscular atrophy observed in diabetics may involve decreases in both cytoplasmic and mitochondrial protein synthesis, the latter reflected in profound changes in the respiratory chain. By contrast, comparison of kidney mitochondria from control and diabetic rats revealed no differences in the rates of protein synthesis in vitro, nor in the mitochondrial translation products, which corresponded closely to liver and skeletal muscle translation products. Similarly, the mitochondrial content of cytochromes b, c + c1, and aa3, the specific activity of succinate dehydrogenase, the rate of state 3 respiration, and the recovery of mitochondria from kidney homogenates did not differ in control and diabetic animals. Kidney mitochondria are thus like liver mitochondria in being relatively unaffected by insulin deprivation.  相似文献   

19.
Rabbit muscle phosphofructokinase was purified to homogeneity based on its property to form large aggregates with time at high concentration of its protein in absence of its effectors. The method involves no heat step or treatment with organic solvent or any ion-exchange columns. The enzyme thus prepared, however, exhibits the same kinetic properties as the enzyme purified by more drastic methods.  相似文献   

20.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号