共查询到20条相似文献,搜索用时 0 毫秒
1.
Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review 总被引:1,自引:0,他引:1
AbstractThis review briefly elucidates the research undertaken and benefits of using aromatic plants for remediation of heavy metal polluted sites. A sustainable approach to mitigate heavy metal contamination of environment is need of the hour. Phytoremediation has emerged to be one of the most preferable choices for combating the metal pollution problem. Aromatic plants can be used for remediation of contaminated sites as they are non-food crops thus minimizing the risk of food chain contamination. Most promising aromatic plants for phytoremediation of heavy metal contaminated sites have been identified from families – Poaceae, Lamiaceae, Asteraceae, and Geraniaceae. They act as potential phytostabilisers, hyper accumulators, bio-monitors, and facultative metallophytes. Being high value economic crops, monetary benefits can be obtained by growing them in tainted areas instead of food crops. It has been observed that heavy metal stress enhances the essential oil percentage of certain aromatic crops. Research conducted on some major aromatic plants in this context has been highlighted in the present review which suggests that aromatic plants hold a great potential for phytoremediation. It has been reported that essential oil from aromatic crops is not contaminated by heavy metals significantly. Thus, aromatic plants are emerging as an ideal candidate for phytoremediation.Highlights? Aromatic plants hold a great potential for phytoremediation of heavy metal contaminated sites.? Being high value economic crops, monetary benefits can be obtained by growing them in contaminated areas instead of food crops.? Research done on some major aromatic plants in this context has been highlighted in the present review. 相似文献
2.
《Chemical Speciation and Bioavailability》2013,25(4):193-198
AbstractDue to the difficulties of precisely characterizing environmentally contaminated soil, the effects of heavy metals on plants are studied using uncontaminated soil spiked with known quantities of heavy metals. One problem in using spiked soils is how accurately the distribution of metals mimics stabilized natural soils. We studied the distribution of cadmium, chromium, copper, lead, nickel, and zinc in soil fractions after application in soluble form. The soil samples included a control (an uncontaminated Typic Argiudoll) and two samples spiked with either a moderate or high heavy metal concentration). After application of the salts the soils were subjected to wet/dry cycles over the course of three months. The soils were fractionated using a sequential chemical extraction procedure employing: (1) CaCl2,(2) NaOH, (3) Na2EDTA and (4) HNO3, HCl, and HF. Soil physical separation was carried out by ultrasonic dispersion. The heavy metal levels were determined using ICP-AES. Each heavy metal displayed a unique behavior when added to soil in the form of soluble salts. Cadmium and zinc remained in the soluble fraction, indicating that no equilibrium was attained, while nickel primarily appeared in the insoluble fraction. Chromium, copper and lead were distributed among various soil chemical fractions. The highest levels of all metals appeared in the clay fraction except lead which was mainly present in the silt fraction. 相似文献
3.
Inhibition of photosynthesis by heavy metals 总被引:36,自引:0,他引:36
Inhibition of photosynthesis by heavy metals is well documented. In this review the results are compared between in vitro experiments on isolated systems (chloroplasts, enzymes .), experiments on excised leaves and intact plants and algae in vivo. In vitro experiments suggest potential sites of heavy metal interaction with photosynthesis at several levels of organisation, which are not necessarily confirmed in vivo. Analytical data on subcellular heavy metal level are generally missing to discuss their mechanism of action in the intact organism. In the field factors such as soil characteristics and air pollution have to be taken into account for assessing the mechanism of action of heavy metals on photosynthesis in plants, growing in a polluted erea.paper presented at the FESPP meeting in Strasbourg (1984) 相似文献
4.
Accumulative phases for heavy metals in limnic sediments 总被引:2,自引:1,他引:2
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals
are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in
their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential
chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations,
easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential
availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt
and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at
pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation
seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered,
hard water systems. 相似文献
5.
Lee EY Lim JS Oh KH Lee JY Kim SK Lee YK Kim K 《Journal of microbiology (Seoul, Korea)》2008,46(1):23-28
An enriched consortium obtained from lake-sediment was developed for the removal of heavy metals such as Cu, Pb, Cr, Ni, and Zn from heavy metal-contaminated water. The removal efficiency of heavy metals in a shaking condition was generally higher than that in the static state. After the fifteenth enrichment with assorted heavy metals, the removal efficiencies in the shaking and static condition at an average concentration of 100 mg/L of each heavy metal were approximately 99 approximately 100% and 95 approximately 100%, respectively, depending on the type of heavy metal. An aerobically grown, pure culture isolated from an enriched culture was analyzed by 16S rRNA sequencing and identified as Ralstonia sp. HM-1. This strain was found to remove various heavy metals with an efficiency of approximately 97 approximately 100% at an average concentration of 200 mg/L of each heavy metal. 相似文献
6.
L. C. Rai M. Raizada N. Mallick Yashmin Husaini A. K. Singh S. K. Dubey 《Biometals》1990,2(4):229-234
Summary This study presents the effects of Cr, Pb, Ni and Ag on growth, pigments, protein, DNA, RNA, heterocyst frequency, uptake of NH4+ and N03–, loss of electrolytes (Na+ and K+), nitrate reductase and glutamine synthetase activities ofNostoc muscorum. The statistical tests revealed a direct positive correlation between the metal concentration and inhibition of different processes. Ni was found to be more toxic against growth, pigments and heterocyst differentiation compared to the other metals. Inhibition of pigment showed the following trend: chlorophyll > phycocyanin > carotenoid. No generalized trend for inhibition of macromolecules was observed. The loss of K+ and Na+ as affected by Cr, Ni and Pb was similar but more pronounced for K+ than Na+. The inhibition of physiological variables depicted the following trend: Na+ loss > K+ loss > glutamine synthetase > NH4 uptake > growth > N03– uptake > nitrate reductase > heterocyst frequency. This study therefore suggests that loss of electrolytes can be used as a first signal of metal toxicity in cyanobacteria. However, further study is needed to confirm whether the abnormality induced by nickel (branch formation) is a physiological or genetic phenomenon. 相似文献
7.
Effects of heavy metals on ultrastructure and HSP70s induction in the aquatic moss Leptodictyum riparium Hedw 总被引:1,自引:0,他引:1
The effects of heavy metals, both toxic (Pb, Cd) and essential (Cu, Zn) on the ultrastructure and the induction of Heat Shock Protein 70 (HSP70) have been studied in the aquatic moss Leptodictyum riparium Hedw. In vitro cultured L. riparium was treated with different heavy metals, both toxic, as cadmium or lead; and essential microelements such as Copper or Zinc concentrations ranging from 10(-3) to 10(-6) M to investigate both ultrastructural damage and HSP induction. TEM observations showed that sub-lethal concentrations of heavy metals caused only slight changes, largely localized in the chloroplasts. Among all the heavy metals tested, cadmium caused the most severe modifications. Heavy metals caused the decrease of the soluble protein content and the enhancement of proteins reacting versus HSP70 antibodies, suggesting that molecular chaperons might be involved in the resistance to toxic effects of lead, cadmium, copper and zinc. Therefore, the induction of HSP70 in L. riparium would confer a higher resistance to pollutants under stressful conditions lethal for other mosses and higher plant species. These results suggest that the moss L. riparium can tolerate heavy metals stress without incurring severe cellular/subcellular damage. Therefore it can be used as a useful indicator of heavy metals accumulation. 相似文献
8.
Pinus banksiana andPicea glauca inoculated or not with the ectomycorrhizal fungusSuillus luteus were grown in a sandy loam soil containing a range of Cd, Cu, Ni, Pb and Zn concentrations. Ectomycorrhizal colonization
rates were significantly reduced on Pinus and Picea seedlings by the heavy metals, particularly Cd and Ni. Needle tissue metal
concentrations were lower in ectomycorrhizal seedlings at low soil metal concentrations. However, at higher soil concentrations,
heavy metal concentrations of needle tissue were similar in ectomycorrhizal and nonmycorrhizal plants. The growth of nonmycorrhizal
seedlings exposed to heavy metals was reduced compared to those inoculated withSuillus luteus. Apparently ectomycorrhizal colonization can protect Pinus and Picea seedlings from heavy metal toxicity at low or intermediate
soil concentrations of Cd, Cu, Ni, Pb and Zn. 相似文献
9.
Cations, including calcium, magnesium, potassium, sodium, copper, iron, nickel and zinc, inhibited (up to 40%) extracellular binding and intracellular uptake of cadmium by Lemna polyrhiza in solution culture. Test plants showed a high capacity of extracellular cadmium binding which was competitively inhibited by copper, nickel and zinc; however, calcium, magnesium and potassium caused non-competitive inhibition. Iron and sodium increased K
m and decreased V
max, thereby causing mixed inhibition of extracellular binding. Intracellular cadmium uptake displayed Michaelis-Menten kinetics. It was competitively inhibited by calcium, magnesium, iron, nickel and zinc. Monovalent cations (sodium and potassium) caused non-competitive and copper caused mixed inhibition of intracellular cadmium uptake. Thus, high levels of cations and metals in the external environment should be expected to lower the cadmium accumulation efficiency of L. polyrhiza. 相似文献
10.
Martínez-Fernández D Walker DJ Romero-Espinar P Flores P del Río JA 《Journal of plant physiology》2011,168(18):2206-2211
Two hydroponic experiments were performed to study the physiological responses to heavy metals (HMs) of two populations of Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae): one (“C2”) from a site contaminated by HMs and one from a non-contaminated site (“LA”). In the first, we studied the effects of elevated concentrations of Zn (12 and 61 μM). Population C2 was more tolerant in terms of root and shoot growth at 61 μM Zn, relative to control plants (1 μM Zn). The similar tissue Zn levels of the two populations suggest that C2 is more tolerant of high tissue Zn. Of the parameters measured that could be related to Zn phytotoxicity (micro and macronutrients, root hydraulic activity, water-extractable Zn and organic acids), none could explain totally the superior tolerance of C2. In the second assay, the effects of Cd (4.4 μM), Cu (7.8 μM) and Zn (76 μM) on plant accumulation of the furanocoumarins (FCs) psoralen and angelicin, which function as feeding deterrents and photo-activated toxins, were assessed. For population C2, all three HMs increased the root FC concentrations, while Cd also raised shoot levels. For LA, Cu raised the root concentrations of both FCs. There was a relationship between plant stress, manifested as proline accumulation and disruption of plant water relations, and increased FC accumulation. Higher tissue levels of FCs likely provide greater protection against bacterial or fungal infection and herbivores. 相似文献
11.
对采集淮河安徽段水及沉积物样品,利用ICP-AES进行重金属分析,结果表明砷、铅、铬超标,在沉积物中的含量最多。研究区域的重金属开始富集于生物体内,已对水生态系统及水产品安全产生影响,应进一步加强检测工作,以便及时采取相应防治对策。 相似文献
12.
《Chemical Speciation and Bioavailability》2013,25(4):115-126
AbstractThe chemical fractionation of lead, cobalt, chromium, nickel, zinc, cadmium and copper in soils around Lakwa oil field, Assam, India was studied using a sequential extraction method. It is evident from the study that the residual fraction is the most important phase for the seven heavy metals under study. Among non-residual fractions metals are mostly associated with the Fe–Mn oxides fraction. The association of heavy metals with organic matter was observed in the following order: copper> cadmium> zinc> lead. The concentration of Pb in the carbonate fraction for both the seasons is higher compared with other metals, which may pose environmental problems due to its highly toxic nature. The comparatively low concentration of metals in the exchangeable fraction indicates low bioavailability. Correlations between physicochemical parameters and metal fractions of soil do not show consistent behaviour. The local mean values of metals when compared with the accepted values of normal abundance and geochemical background, indicates two to four fold increases in this area. However, the values are within the range of normal abundance. As well as from natural soil geochemical behaviour, anthropogenic influence might have a close bearing on the association of metals with the soil system in the studied area. 相似文献
13.
Jonathan M. Akins Joyce A. Schroeder Danny L. Brower H. Vasken Aposhian 《Biometals》1992,5(2):111-120
Heavy metals cause irreversible neurobehavioral damage in many developing mammals, but the mechanisms of this damage are unknown. The influence of three heavy metal compounds, triethyllead chloride, lead acetate and cadmium chloride, on lethality, development, behavior and learning was studied using the fruit fly,Drosophila melanogaster. This animal was used because it allows hundreds of subjects to be assayed very easily in individual experiments and because it is a system in which toxicological questions might be answered by using the techniques of modern molecular genetics. When triethyllead chloride, lead acetate or cadmium chloride was placed in the medium, the larval LC50 (± standard error) was found to be 0.090±0.004, 6.60±0.64 and 0.42±0.04mm, respectively. Each of the tested compounds produced a dose-related delay in development. In particular, they caused a delay in the development of larvae to pupae. When larvae were reared on medium containing triethyllead chloride (0.06mm), lead acetate (3.07mm) or cadmium chloride (0.11mm), phototaxis, locomotion and learning were not inhibited. Since significant neurobehavioral effects were not observed under the experimental conditions used,Drosophila does not appear to be an appropriate animal for the genetic dissection of such effects of heavy metals during development. 相似文献
14.
Göran Dave Benneth Dennegård 《Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health)》1994,3(3):207-219
Superficial (0 to 2 cm) sediments were sampled from 62 sites in Kattegat and Skagerrak during autumn 1989 and spring 1990, tested for toxicity to Daphnia magna and Nitocra spinipes (Crustacea) and analyzed for heavy metals (Cd, Cr, Cu, Hg, N, Pb, Zn), nutrients (N and P) and organic carbon. Whole sediment toxicity to Nitocra spinipes, expressed as 96-h LC50, ranged from 1.8 to > > 32 percent sediment (wet wt), which is equivalent to 0.63 to 53 percent dry wt. Sediment total metal concentrations (mg kg-1 dry wt) ranged from 0.01 to 0.32 for Cd, 8 to 57 for Cr, 3 to 40 for Cu, 0.03 to 0.86 for Hg, 3 to 43 for Ni, 6 to 37 for Pb and 21 to 156 for Zn. Analyzed concentrations of heavy metals were tested for correlation with whole sediment toxicity normalized to dry wt, and significant correlations (Spearman p<0.05) were found for Cd, Cr, Cu, Hg, and Ni. However, the analyzed concentrations of these metals were below the spiked sediment toxicity of these heavy metals to N. spinipes, except for Cr and Zn for which analyzed maximum concentrations approached the 96-h spiked sediment LC50s. There was no improvement in correlation between the sum of heavy metal concentrations normalized to their spiked toxic concentrations (Toxic Unit approach) and the whole sediment toxicity. Calculated heavy-metal-derived toxicity based on toxic units and whole sediment toxicity ranged from 0.1 to 24 (mean value 2.3 and SD 4.2). Theoretically, a value of 1.0 would explain whole sediment toxicity from measured metal concentrations using this approach. Thus, in spite of the fact that the total concentrations of the heavy metals were sufficient to cause toxicity based on an additive model for most of these sediments, the observed toxicity of the sediments from Kattegat and Skagerrak could not exclusively be explained by the concentrations of heavy metals, except for Cr and Zn at their maximum concentrations. Therefore, other pollutants than these heavy metals must also be considered as possible sediment toxicants. 相似文献
15.
The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (−)-menthol have been isolated. Using these tools for pathway engineering, two genes and two expression strategies have been employed to create transgenic peppermint plants with improved oil composition and yield. These experiments, along with related studies on other pathway genes, have led to a systematic, stepwise approach for the creation of a ‘super’ peppermint. 相似文献
16.
外生菌根与植物抗重金属胁迫机理 总被引:7,自引:1,他引:7
外生菌根是外生菌根真菌和植物营养根形成的共生体,能够增加植物对污染胁迫的抵抗能力。本文综述了20多年来国内外研究外生菌根增加植物抗重金属毒害的成果,指出了外生菌根在植物抗重金属毒害中的积极作用,并概括其抗性的主要机理为:外延菌丝的吸收作用;菌根分泌物的调节与螯合作用;菌根菌套或哈蒂氏网吸收过滤有毒金属;菌根菌套的疏水性作用。在研究外生菌根抗重金属毒害机理的基础上,提出了该领域今后的研究前景。 相似文献
17.
H. -G. Heumann 《Protoplasma》1987,136(1):37-48
Summary The toxicity of some heavy metals to the common macrophytic freshwater algaChara vulgaris was studied under laboratory conditions. For experiments, apical tips of algae containing two internodes were cultivated for fourteen days in the presence of various concentrations of cadmium, mercury or lead (as triethyl lead or lead nitrate). Fifty percent growth inhibition occurred with concentrations of 8.5×10–8 M (9.5 ppb) cadmium, 7.5×10–7M (150ppb) mercury, 1.6×10–6 M (330ppb) organic lead or 4× 10–5 M (8000 ppb) inorganic lead. Sublethal concentrations of these metals caused alterations in the fine structure of internodal cells which turned out to be at least partly metal-specific or in the case of lead, the effects depended on whether the lead was ionic or organically bound. Cadmium and inorganic lead induced disorders of cell wall microfibrils which resulted in local wall protuberances. Mercury affected the chloroplasts which mostly showed considerably increased grana stacks. In addition, mercury caused a dilation of the endoplasmic reticulum and of the mitochondrial tubuli. Organic lead damaged the membrane system of chloroplasts; sheet- or tubule-like thylakoids were disarranged and showed whorl-like structures. At higher concentrations of organic lead, tubular invaginations of the plasmalemma (charasomes) disappeared. The fine structure of nuclei was not altered by any of the metals. 相似文献
18.
The genotoxic interaction of metals, which are common environmental contaminants, was studied in cultured hepatocytes. Freshly isolated rat hepatocytes were exposed to concentrations of cadmium, copper, silver and lead salts ranging from non-cytotoxic to moderately cytotoxic (as determined by LDH release), and the incorporation of [3H]thymidine into the DNA, as a measure of repair synthesis, was followed. In addition, the uptake of metals by the nuclear fraction was determined using Inductively Coupled Plasma/Mass Spectrometry or atomic absorption spectrophotometry. The evaluation of binding of 109Cd to the DNA in situ was also attempted. It was observed that after a 20 h exposure period, all the metals investigated were found in the nuclear fraction of hepatocytes, with Ag apparently being accumulated less efficiently. In parallel, Cd (0.18 to 1.8 µM) and Cu (7.9 to 78.5 µM) consistently produced a statistically significant stimulation of [3H]thymidine incorporation into the DNA, in the presence or absence of hydroxyurea while Ag was active only at the highest concentration tested (18.5 µM). In contrast, Pb failed to induce a UDS response at the levels used. Moreover, exposure of hepatocytes to 1.8 µM 109CdCl2 for 20 h led to a DNA binding ratio of 0.98 ± 0.23 ng Cd/ µg DNA. The present results support the view that the nucleus may be an important target organelle for metal toxicity.Abbreviations 2-AAF
2-acetylaminofluorene
- Cd
cadmium
- HU
hydroxyurea
- lCP/MS
inductively coupled plasma/mass spectrometry
- Hg
mercury
- Ni
nickel
- UDS
unscheduled DNA synthesis 相似文献
19.
Pesticides and heavy metals in Danish streambed sediment 总被引:2,自引:0,他引:2
The role of streambed sediment as a sink for pesticides and heavy metals was investigated in 30 Danish lowland streams. The investigated streams drain catchments varying in hydrology, topography, soil type and land use. The <250 m newly accumulated fraction of the uppermost 1–2 cm layer of streambed sediment was analysed for 19 old and modern pesticides and 9 heavy metals. DDE was present in the sediment of all the streams. Of the herbicides, fungicides and insecticides currently in use, the most frequently detected was diuron (50.0%), fenpropimorph (66.7%) and lambda-cyhalothrin (6.7%), respectively. The pesticides detected in the highest concentration were fenpropimorph (1700 ng g–1), propiconazole (130 ng g–1) and isoproturon (110 ng g–1). The heavy metals are listed in order of increasing median concentration: Cd (0.80 g g–1), Co (9.1 g g–1), As (12.0 g g–1), Ni (19.0 g g–1), Cr (19.2 g g–1), Pb (19.7 g g–1), Cu (20.1 g g–1), V (28.5 g g–1), Zn (103 g g–1). The average number of pesticides detected in the 27 streams draining predominantly agricultural catchments was (3.7±2.0) being higher (p=0.077) than in the three streams draining non-agricultural catchments (1.7±0.6). Pesticides were significantly related to catchment size, soil type and hydrological regime. Several heavy metals (Cr, Cu, Pb, V and Zn) were related to urban activity and soil type. 相似文献
20.
The influence of the following heavy metals, copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), on haemocytes of the house fly Musca domestica L. was studied under laboratory conditions. House fly larvae were exposed to low or high, semi-lethal concentrations of metals. These particular metals were selected because they are present in polluted environments in Poland. In addition, we studied expression of the stress proteins HSP70 and HSP72 in haemocytes collected from larvae that had been exposed to heavy metal. The obtained results showed changes in haemocytes morphology and phagocytotic plasticity in the experimental flies in comparison to control. The number of prohaemocytes, regarded as stem cells, increased, while granulocytes, responsible for phagocytosis, decreased. However, we have not detected any clear changes in expression of HSP70 or HSP72 in flies treated with low or high concentrations of the heavy metals. 相似文献