首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jong Jin Lim 《Biopolymers》1976,15(12):2371-2383
The transition temperatures tt and enthalpy changes ΔH in the helix–coil transition of solid tendon collagen soaked in a solution containing one of the following stabilizing or destabilizing agents, HCHO, NaF, NaCl, NaI, NaBr, NaOH, NH2CONH2, CaCl2, MgCl2, were measured as a function of molar concentration by a calorimetric method. The temperature and the enthalpy changes accompanying the transition behaved in a similar manner: when the tt was depressed by the presence of ions, similar behaviour was observed in ΔH. Both parameters (tt and ΔH) increased for HCHO, and decreased for NaF and NaCl at concentrations lower than 0.2 M. Above 0.2 M they increased for NaF and NaCl, and decreased in the presence of the other reagents listed above. The average tt and the ΔH observed in collagen soaked in water were 63.5°C and 12.3 cal/g, respectively. In addition to the parameters mentioned above, the molar effectiveness of the various reagents was obtained for the cases where there was a linear relationship between the tt and molar concentration of the reagent in the solution. Since both the tt and the ΔH were observed to vary, the entropy change (ΔS) accompanying the transition was calculated using thermodynamic relations. In order to explain the ΔS observed as a function of ionic concentration, the thermodynamic relationships have been obtained from a partition function under suitable assumptions. Since the partition function is dependent on the number of hydrogen bonds responsible for collagen stability, the result obtained has been compared with the values predicted by the two most quoted models for collagen. The present study is in accordance with the Ramachandran model for collagen structure, which predicts more than one hydrogen bond per three residues.  相似文献   

2.
Values for the thermodynamic quantities, ΔH° = 11.8 ± 2.0 Kcal/mole and ΔS° = 43.6 ± 6.0 e.u., of the 3-13 helix–coil equilibrium of isolated S-peptide (19 residue N-terminal fragment of ribonuclease A) in aqueous solution (3 m M, 1M NaCl, pD 5.4) have been determined from a joint analysis of the Thr 3γ, Ala 6β, Phe 8meta, and Phe 8para 1H chemical shift vs temperature curves (?7 to 80°C) in several aqueous–trifluorethanol mixtures. Chemical shifts in the coil and in the helix have been determined for up to 16 protons belonging to the 3-13 fragment. Thermodynamic parameters have also been determined for C-peptide (13 residue fragment) and a number of S-peptide derivatives. From the variation of the values of the thermodynamic parameters at pD 2.5, 5.4, and 8.0, a quantitation of the two helix-stabilizing side-chain interactions can be made: (1) Δ(ΔH°) ? 5 Kcal/mole and Δ(ΔS°) ? 18 e.u. for the salt bridge Glu 2? … Arg 10+ and (2) Δ(ΔH°) ? 3 Kcal/mole and Δ(ΔS°) = 9 e.u. for the one in which the His 12+ imidazolium group is involved, presumably a partial stacking with the Phe 8 side chain.  相似文献   

3.
4.
The thermal stability of Taq DNA polymerase is well known, and is the basis for its use in PCR. A comparative thermodynamic characterization of the large fragment domains of Taq (Klentaq) and E. coli (Klenow) DNA polymerases has been performed by obtaining full Gibbs‐Helmholtz stability curves of the free energy of folding (ΔG) versus temperature. This analysis provides the temperature dependencies of the folding enthalpy and entropy (ΔH and ΔS), and the heat capacity (ΔCp) of folding. If increased or enhanced non‐covalent bonding in the native state is responsible for enhanced thermal stabilization of a protein, as is often proposed, then an enhanced favourable folding enthalpy should, in general, be observed for thermophilic proteins. However, for the KlenowKlentaq homologous pair, the folding enthalpy (ΔHfold) of Klentaq is considerably less favorable than that of Klenow at all temperatures. In contrast, it is found that Klentaq's extreme free energy of folding (ΔGfold) originates from a significantly reduced entropic penalty of folding (ΔSfold). Furthermore, the heat capacity changes upon folding are similar for Klenow and Klentaq. Along with this new data, comparable extended analysis of available thermodynamic data for 17 other mesophilic–thermophilic protein pairs (where enough applicable thermodynamic data exists) shows a similar pattern in seven of the 18 total systems. When analyzed with this approach, the more familiar “reduced ΔCp mechanism” for protein thermal stabilization (observed in a different six of the 18 systems) frequently manifests as a temperature dependent shift from enthalpy driven stabilization to a reduced‐entropic‐penalty model. Proteins 2014; 82:785–793. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Extension of the (isothermal) Gibbs–Helmholtz equation for the heat capacity terms (ΔCp) allows formulating a temperature function of the free (Gibbs) energy change (ΔG). An approximation of the virtually unknown ΔCp temperature function enables then to determine and numerically solve temperature functions of thermodynamic parameters ΔH and ΔS (enthalpy and entropy change, respectively). Analytical solutions and respective numeric procedures for several such approximation formulas are suggested in the presented paper. Agreement between results obtained by this analysis with direct microcalorimetric measurements of ΔH (and ΔCp derived from them) was approved on selected cases of biochemical interactions presented in the literature. Analysis of several ligand-membrane receptor systems indicates that temperature profiles of ΔH and ΔS are parallel, largely not monotonic, and frequently attain both positive and negative values within the current temperature range of biochemical reactions. Their course is determined by the reaction change of heat capacity: temperature extremes (maximum or minimum) of both ΔH and ΔS occur at ΔCp?=?0, for most of these systems at roughly 285–305 K. Thus, the driving forces of these interactions may change from enthalpy-, entropy-, or enthalpy-entropy-driven in a narrow temperature interval. In contrast, thermodynamic parameters of ligand-macromolecule interactions in solutions (not bound to a membrane) mostly display a monotonic course. In the case of membrane receptors, thermodynamic discrimination between pharmacologically defined groups—agonists, partial agonists, antagonists—is in general not specified and can be achieved, in the best, solely within single receptor groups.  相似文献   

6.
Prodigiosin-25 C     
The equilibrium constant of the isomerization reaction between d-glucose and d-fructose which is catalyzed by a. glucose isomerase from Streptomyces sp. was obtained by both methods of chemical analysis and of kinetic study over the temperature range of 25° to 70°C.

It was found that the formation of d-fructose from d-glucose was an endothermic reaction with the heat of the reaction, ΔH, of +2220 cal/mole. The standard free energy change, ΔG, and the standard entropy change, ΔS, associated with the isomeric change were found to be +180 cal/mole and + 6.8 cal/deg. mole at 25°C, respectively. The values of these thermodynamic quantities at other temperature are also summarized.  相似文献   

7.
R Mandel  G D Fasman 《Biopolymers》1975,14(8):1633-1649
A series of copolymers of L -lysine and L -valine [poly(L -lysinef L -valine100-f)] containing 0–13% L -valine have been studied, in 0.10M KF solution, using potentiometric titration and circular dichroism spectroscopy. Incorporation of increasing amounts of valine into the copolymers favors β-sheet formation over α-helix formation at high pH and room temperature. The titrations were analyzed using the method of Zimm and Rice and the partial free energy (ΔG0) for the coil-to-β-sheet transition for valine is estimated at 900 cal/mole at 25°C. From the temperature dependence of the free energy, the partial enthalpy, ΔH0, and entropy, ΔS0, of the transition for valine is estimated to be 854 cal/mole and 6.0 e.u., respectively. The corresponding partial thermodynamic parameters for L -lysine are in agreement with published results. The fraction of β-sheet versus pH has been calculated for poly(L -lysine86.8 L -valine13.2) at 25.0°C using the titration data; data obtained from circular dichroism spectroscopy for the same copolymer are in good accord. It is concluded from these results that L -valine is a very strong β-sheet forming amino acid. Furthermore, these results indicate that the Zimm–Rice method is applicable to transitions between the coil and β-sheet states for a polypeptide containing two different residues.  相似文献   

8.
Many macromolecular interactions, including protein‐nucleic acid interactions, are accompanied by a substantial negative heat capacity change, the molecular origins of which have generated substantial interest. We have shown previously that temperature‐dependent unstacking of the bases within oligo(dA) upon binding to the Escherichia coli SSB tetramer dominates the binding enthalpy, ΔHobs, and accounts for as much as a half of the observed heat capacity change, ΔCp. However, there is still a substantial ΔCp associated with SSB binding to ssDNA, such as oligo(dT), that does not undergo substantial base stacking. In an attempt to determine the origins of this heat capacity change, we have examined by isothermal titration calorimetry (ITC) the equilibrium binding of dT(pT)34 to SSB over a broad pH range (pH 5.0–10.0) at 0.02 M, 0.2 M NaCl and 1 M NaCl (25°C), and as a function of temperature at pH 8.1. A net protonation of the SSB protein occurs upon dT(pT)34 binding over this entire pH range, with contributions from at least three sets of protonation sites (pKa1 = 5.9–6.6, pKa2 = 8.2–8.4, and pKa3 = 10.2–10.3) and these protonation equilibria contribute substantially to the observed ΔH and ΔCp for the SSB‐dT(pT)34 interaction. The contribution of this coupled protonation (∼ −260 to −320 cal mol−1 K−1) accounts for as much as half of the total ΔCp. The values of the “intrinsic” ΔCp,0 range from −210 ± 33 cal mol−1 °K−1 to −237 ± 36 cal mol−1K−1, independent of [NaCl]. These results indicate that the coupling of a temperature‐dependent protonation equilibria to a macromolecular interaction can result in a large negative ΔCp, and this finding needs to be considered in interpretations of the molecular origins of heat capacity changes associated with ligand‐macromolecular interactions, as well as protein folding. Proteins 2000;Suppl 4:8–22. © 2000 Wiley‐Liss, Inc.  相似文献   

9.
The low-temperature heat capacity of collagen (in the hydrated and dehydrated states) and the large entropy of collagen in the coiled state relative to the same protein in the helical state were investigated. The heat capacity for collagen in the solid state in the temperature range 4°–50° K changes proportionally to the square of temperature (CpT2). Above 50°K there is a linear dependence (CpT). The differences in the character of temperature dependence of heat capacity for the hydrated and dehydrated collagen show the importance of the specific interaction of water molecules with polypeptide chains of this protein. The peculiarities of the temperature dependence of the heat capacity difference (ΔCp) of hydrated denatured (random coiled) and hydrated native (helical) collagen are observed at 15°, 120°, and 240°K. These differences are caused by the varying degree of ordering of the hydrate water molecules in native and denatured collagen macromolecules. At all temperatures (4°–300°K) the entropy of the random coiled state is higher than that of collagen in the native state and at 298°K ΔS = ∫ (ΔCp/T)dT = 0.8 cal/100 g °K.  相似文献   

10.
The equilibrium constant of the isomerization reaction between d-mannose and d-fructose which is catalyzed by a mannose isomerase from Streptomyces aerocolorigenes was obtained by using three methods over the temperature range from 1 to 40°C.

It was found that the equilibrium constant was scarcely dependent on temperature, ΔH, the heat of the formation of d-fructose from d-mannose, being approximately zero.

The standard free energy change, ΔG, and the standard entropy change, ΔS, of the reaction were calculated from the equilibrium constants at various temperatures and ΔH. The values of ΔG and ΔS at 25°C were ?650 cal/mole and + 2.2 cal/deg·mole, respectively.

By combining these thermodynamic data with those obtained for the isomerization reaction between d-glucose and d-fructose reported in the previous paper, ΔH, ΔG and ΔS for the isomerization between d-mannose and d-glucose were indirectly obtained to be +2220 cal/mole, +830 cal/mole and +4.6 cal/deg·mole at 25°C, respectively.  相似文献   

11.
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular‐docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three‐dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular‐docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8‐anilino‐1‐naphthalenesulfonic acid, was changed with norgestrel addition.  相似文献   

12.
The thermally induced conformational changes of poly-N5-(3-hydroxypropyl)-L -glutamine in water and in methanol–water (3:7 v/v) have been analyzed in terms of the Lifson-Roig theory. The transitions in both solvents can be described by using v = 0.017. The thermodynamic parameters for the random coil-to-helix transition of one amino acid residue at room temperature were found to be: in water, ΔH = ? 130 cal/mole and ΔS = ? 0.45 e.u.; in methanol–water (3:7 v/v), ΔH = ? 170 cal mole and ΔS = ? 0.45 e.u. The size distribution of helical segments is broad, and the results of numerical calculations are presented for three degrees of polymerization (DP = 100, 300, and 750).  相似文献   

13.
Our understanding of the energetics that govern antigen–antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen–antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen–antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen–antibody complex is measured with a sensitivity as high as 0.1 μcal s−1. The free energy of binding (ΔG), the binding enthalpy (ΔH), and the binding entropy (ΔS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (ΔCp) accompanying the formation of an antigen–antibody complex is obtained from ΔHmeasured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen–antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.  相似文献   

14.
Yeast tRNA3Leu is one of several tRNA molecules which can adopt a stable, biologically inactive, denatured conformation. The circular dichroism of the native and denatured conformers differs, providing the basis for the present study of the mechanism for the renaturation process. Conversion of the denatured structure to the native takes place in two steps: a rapid change occurring immediately on addition of Mg++, followed by a slower, strongly temperature-dependent step which returns the molecule to its biologically active state. Optimal kinetic data for the second step could be obtained at 285 nm. Analysis of the time dependence of Δε285 by the Guggenheim method demonstrated that this step follows first-order kinetics. The temperature dependence of the rate constants over the range 32–41°C yielded the following parameters for the rate-limiting step: Ea = 69 kcal/mole, ΔH? = 69 kcal/mole, and ΔS? = 146 cal/mole deg. Values of this magnitude are typical of order—order transitions in nucleic acids.  相似文献   

15.
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcalHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScalSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcalGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999  相似文献   

16.
Heteroassociation of antibacterial antibiotic norfloxacin with aromatic vitamins nicotinamide and flavin mononucleotide in aqueous solution was studied by 1H NMR spectroscopy (500 MHz). Equilibrium constants, induced proton chemical shifts, and thermodynamic parameters (ΔH, ΔS) for the reactions of heteroassociation of the molecules were determined on the basis of the concentration and temperature dependences of proton chemical shifts for interacting aromatic molecules. The analysis of the results obtained indicates the formation of heterocomplexes between vitamin molecules and norfloxacin owing to stacking interactions between aromatic chromophores and additional intermolecular hydrogen bonding in norfloxacin-nicotinamide. The most probable spatial structures of 1:1 norfloxacin-flavin mononucleotide and norfloxacin-nicotinamide heterocomplexes were determined by molecular modeling methods using X-PLOR software on the basis of analysis of induced proton chemical shifts.  相似文献   

17.
The conformational properties of block copolymers of poly-L -leucine in water have been examined. The degree of polymerization of the poly-L -leucine block was 11 and 21, respectively, for samples prepared by the Merrifield procedure, and 56 for a sample prepared by the polymerization of leucine N-carboxyanhydride. The optical rotatory dispersion parameter b0 was used to obtain the helix content θh at various temperatures. Application of the Lifson-Roig theory gave the following parameters for the transition of a residue from a coil to a helical state: v = 0.05–0.011, ΔH = +100 cal/mole, ΔS = +0.70–1.00 e. u. These parameters, as well as those for other polyamino acids, are accounted for by hydrophobic bonds involving the nonpolar side chains in the helical and randomly coiled forms. From the data for poly-L -alanine and theoretical values of the thermodynamic parameters for hydrophobic bond formation, the parameters for formation of a polyglycine helix are computed. By separating the contributions of the backbone, it is possible to obtain a set of thermodynamic parameters for the side-chain contributions of a number of polyamino acids. Increased size of the nonpolar side chain (with a larger contribution from hydrophobic bonding) makes a larger contribution to the stability of the α-helix which is reflected, among other ways, in a higher helix content at given temperature.  相似文献   

18.
Electrostatic interactions have a central role in some biological processes, such as recognition of charged ligands by proteins. We characterized the binding energetics of yeast triosephosphate isomerase (TIM) with phosphorylated inhibitors 2-phosphoglycollate (2PG) and phosphoglycolohydroxamate (PGH). We determined the thermodynamic parameters of the binding process (Kb, ΔGb, ΔHb, ΔSb and ΔCp) with different concentrations of NaCl, using fluorimetric and calorimetric titrations in the conventional mode of ITC and a novel method, multithermal titration calorimetry (MTC), which enabled us to measure ΔCp in a single experiment. We ruled out specific interactions of Na+ and Cl- with the native enzyme and did not detect significant linked protonation effects upon the binding of inhibitors. Increasing ionic strength (I) caused Kb, ΔGb and ΔHb to become less favorable, while ΔSb became less unfavorable. From the variation of Kb with I, we determined the electrostatic contribution of TIM−2PG and TIM−PGH to ΔGb at I = 0.06 M and 25 °C to be 36% and 26%, respectively. The greater affinity of PGH for TIM is due to a more favorable ΔHb compared to 2PG (by 19-24 kJ mol-1 at 25 °C). This difference is compatible with PGH establishing up to five more hydrogen bonds with TIM. Both binding ΔCps were negative, and less negative with increasing ionic strength. ΔCps at I = 0.06 M were much more negative than predicted by surface area models. Water molecules trapped in the interface when ligands bind to protein could explain the highly negative ΔCps. Thermodynamic binding functions for TIM−2PG changed more with ionic strength than those for TIM−PGH. This greater dependence is consistent with linked, but compensated, protonation equilibriums yielding the dianionic species of 2PG that binds to TIM, process that is not required for PGH.  相似文献   

19.
The folding of randomly coiled poly(L -glutamic acid) to the helical state has been studied in N-methylacetamide by titration methods. Since this solvent would be expected to form amide-peptide group hydrogen bonds with the unfolded form of the polymer, to a first approximation no helix stabilization could come from intrapolymer hydrogen bonds. The titration data, collected from 30 to 70°C yield the following values per residue for the thermodynamic parameters governing the coil-helix reaction for the uncharged polymer: ΔG30°C°, ?1. 9 ± 0.1 kcal; Δ H°, 0 ± 0.1 kcal; ΔS30°C°, 6.3 ± 0.6 eu. In N-methyl acetamide, the helix is an order of magnitude more stable than in water, and this stabilization appears to be entirely the result of the entropy gained by solvent molecules which are released from the polymer upon folding.  相似文献   

20.
Histamine was immobilized on Sepharose CL‐6B (Sepharose) for use as a ligand of hydrophobic charge induction chromatography (HCIC) of proteins. Lysozyme adsorption onto Histamine‐Sepharose (HA‐S) was studied by adsorption equilibrium and calorimetry to uncover the thermodynamic mechanism of the protein binding. In both the experiments, the influence of salt (ammonium sulfate and sodium sulfate) was examined. Adsorption isotherms showed that HA‐S exhibited a high salt tolerance in lysozyme adsorption. This property was well explained by the combined contributions of hydrophobic interaction and aromatic stacking. The isotherms were well fitted to the Langmuir equation, and the equilibrium parameters for lysozyme adsorption were obtained. In addition, thermodynamic parameters (ΔHads, ΔSads, and ΔGads) for the adsorption were obtained by isothermal titration calorimetry by titrating lysozyme solutions into the adsorbent suspension. Furthermore, free histamine was titrated into lysozyme solution in the same salt‐buffers. Compared with the binding of lysozyme to free histamine, lysozyme adsorption onto HA‐S was characterized by a less favorable ΔGads and an unfavorable ΔSads because histamine was covalently attached to Sepharose via a three‐carbon‐chain spacer. Consequently, the immobilized histamine could only associate with the residues on the protein surface rather than those in the hydrophobic pocket, causing a less favorable orientation between histamine and lysozyme. Further comparison of thermodynamic parameters indicated that the unfavorable ΔSads was offset by a favorable ΔHads, thus exhibiting typical enthalpy‐entropy compensation. Moreover, thermodynamic analyses indicated the importance of the dehydration of lysozyme molecule and HA‐S during the adsorption and a substantial conformational change of the protein during adsorption. The results have provided clear insights into the adsorption mechanisms of lysozyme onto the new HCIC material. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号