首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of sex steroid receptors in human skin   总被引:10,自引:0,他引:10  
Sex steroid hormones are involved in regulation of skin development and functions as well as in some skin pathological events. To determine the sites of action of estrogens, androgens and progestins, studies have been performed during the recent years to accurately localize receptors for each steroid hormone in human skin. Androgen receptors (AR) have been localized in most keratinocytes in epidermis. In the dermis, AR was detected in about 10% of fibroblasts. In sebaceous glands, AR was observed in both basal cells and sebocytes. In hair follicles, AR expression was restricted to dermal papillar cells. In eccrine sweat glands, only few secretory cells were observed to express AR. Estrogen receptor (ER) alpha was poorly expressing, being restricted to sebocytes. In contrast, ERbeta was found to be highly expressed in the epidermis, sebaceous glands (basal cells and sebocytes) and eccrine sweat glands. In the hair follicle, ERbeta is widely expressed with strong nuclear staining in dermal papilla cells, inner sheath cells, matrix cells and outer sheath cells including the buldge region. Progesterone receptors (PR) staining was found in nuclei of some keratinocytes and in nuclei of basal cells and sebocytes in sebaceous glands. PR nuclear staining was also observed in dermal papilla cells of hair follicles and in eccrine sweat glands. This information on the differential localization of sex steroid receptors in human skin should be of great help for future investigation on the specific role of each steroid on skin and its appendages.  相似文献   

2.
Evolutionary origins of the mammary gland   总被引:1,自引:0,他引:1  
Because the mammary gland has no known homologue among the extant reptiles, attempts to reconstruct its evolution must focus on evidence from living mammals. Of the numerous structures that have been hypothesized to have given rise to the mammary gland, only three remain as plausible progenitors: sebaceous glands, eccrine glands and apocrine glands. Ancestral mammary glands are usually assumed to have produced a copious watery secretion like that of human eccrine sweat glands. However, in terms of anatomy, physiology, development and topographical distribution, mammary glands are more similar to apocrine and sebaceous glands than to typical eccrine glands. Nevertheless, each of the three populations of cutaneous glands exhibit specializations unlikely to be primitive for the mammary gland. The mammary gland either predated full differentiation of mammalian cutaneous glands or, more probably, evolved as a neomorphic mosaic that combined the properties of apocrine and sebaceous glands. Consequently, ancestral, prototypic lacteal glands may have had the capacity to synthesize and secrete small amounts of organic substances, as do sebaceous and apocrine glands of living mammals.  相似文献   

3.
1. In the epidermis non-specific esterase activity outlines a strongly reactive band between the stratum granulosum and the stratum corneum. In the epidermis of the palm, there is no such esterase-rich band. 2. The outer sheath of active hair follicles has strong enzyme activity. The degenerating hair bulb in catagen follicles is very strongly reactive, and clusters of cells around the hair club in quiescent follicles are rich in enzyme activity. 3. Strong enzyme activity is found in young sebaceous cells, while decaying sebaceous cells and newly formed sebum are unreactive. Old sebum, however, is very intensely reactive. 4. Only the "dark" cells of eccrine sweat glands show a reaction; the "clear" cells are negative. 5. The cells of axillary apocrine glands abound in enzyme.  相似文献   

4.
1. In the epidermis non-specific esterase activity outlines a strongly reactive band between the stratum granulosum and the stratum corneum. In the epidermis of the palm, there is no such esterase-rich band. 2. The outer sheath of active hair follicles has strong enzyme activity. The degenerating hair bulb in catagen follicles is very strongly reactive, and clusters of cells around the hair club in quiescent follicles are rich in enzyme activity. 3. Strong enzyme activity is found in young sebaceous cells, while decaying sebaceous cells and newly formed sebum are unreactive. Old sebum, however, is very intensely reactive. 4. Only the "dark" cells of eccrine sweat glands show a reaction; the "clear" cells are negative. 5. The cells of axillary apocrine glands abound in enzyme.  相似文献   

5.
6.
Both, calmodulin (CaM) as well as the antigen Ki67 show a close relationship to cell proliferation. By means of specific antibodies against them, it has become possible to study the spatial distribution of proliferative compartments in tissues. We performed an indirect immunofluorescence study on unfixed frozen sections of human adult skin to gain more informations about the spatial distribution of immunoreactive CaM and Ki67 in skin appendages, i.e. anagen hair follicle, sebaceous and eccrine sweat gland. Two major patterns of immunoreactivity were seen: Type (1) or epidermis-like, which was present in the interfollicular epidermis and the pilosebaceous unit. Type (2) or sweat gland type, which was seen in eccrine sweat glands. Both types disclosed significant differences in the relative number of proliferative cells in S-phase, which might be a consequence of a quiet different tissue architecture. Furthermore, myoepithelial cells of secretory coils were likely to represent mainly SQ-cells. Their immunoreactivity in human skin was quiet different from other parts of eccrine sweat glands suggesting another ontogenetic pathway.  相似文献   

7.
8.
9.
Functional integrity of the regenerated tissues requires not only structural integrity but also vascularization and innervation. We previously demonstrated that the three-dimensional (3D) reconstructed eccrine sweat glands had similar structures as those of the native ones did, but whether the 3D reconstructed glands possessing vascularization and innervation was still unknown. In the study, Matrigel-embedded eccrine sweat gland cells were implanted under the inguinal skin. Ten weeks post-implantation, the vascularization, and innervation in the 10-week reconstructed eccrine sweat glands and native human eccrine sweat glands were detected by immunofluorescence staining. The results showed that the fluorescent signals of general neuronal marker protein gene product 9.5, adrenergic nerve fiber marker tyrosine hydroxylase, and cholinergic nerve fiber markers acetylcholinesterase and vasoactive intestinal peptide embraced the 3D reconstructed glands in circular patterns, as the signals appeared in native eccrine sweat glands. There were many CD31- and von Willebrand factor-positive vessels growing into the plugs. We demonstrated that the 3D reconstructed eccrine sweat glands were nourished by blood vessels, and we for the first time demonstrated that the engineering sweat glands were innervated by both cholinergic and adrenergic fibers. In conclusion, the 3D reconstructed eccrine sweat glands may have functions as the native ones do.  相似文献   

10.
Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs) proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs) and bone marrow stem cells (BMSCs) revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.  相似文献   

11.
Recent experimental evidence indicates that non-neuronal acetylcholine is involved in the regulation of basic cell functions. Here we investigated the cholinergic system in the skin of healthy volunteers and patients with atopic dermatitis (AD). The synthesizing enzyme, choline-acetyltransferase (ChAT), was studied by anti-ChAT immunohistochemistry and enzyme assay. Skin biopsies taken from healthy volunteers and from AD patients were separated into the 2 mm superfical (epidermis and upper dermis) and 3 mm underlying portion (deeper dermis and subcutis). ChAT enzyme activity was detected in homogenized skin and subcutaneous fat (about 13 nmol/mg protein/h). ChAT immunoreactivity was expressed in keratinocytes, hair papilla, sebaceous and eccrine sweat glands, endothelial cells and mast cells. In healthy volunteers the superficial and underlying portion of skin biopsies contained 130 +/- 30 and 550 +/- 170 pmol/g acetylcholine (n = 12), respectively. In AD patients (n = 7) acetylcholine was increased 14-fold in the superficial and 3-fold in the underlying biopsy portion. The present study demonstrates the widespread expression of ChAT protein in the vast majority of human skin cells. Tissue levels of acetylcholine are greatly (14-fold) enhanced in the superficial 2 mm skin of AD patients.  相似文献   

12.
Mutant animals in the skin and hair have been used to identify important genes in biomedical research. We describe a new mutant rat, sparse and wavy hair (swh), that spontaneously arose in a colony of inbred WTC rats. The mutant phenotype was characterized by sparse and wavy hair, which was most prominent at age 3-4 weeks, and was inherited in an autosomal recessive manner. The swh/swh rats showed impaired gain of body weight, and their hair follicles were reduced both in number and size, associated with hypoplasia of the sebaceous glands and the subcutaneous fat tissue. Female swh/swh rats were unable to suckle their offspring. Their mammary glands were hypoplastic, and differentiation of mammary epithelial and myoepithelial cells was impaired. Linkage analysis of 579 backcross rats localized the swh locus to a .35-cM region between D17Rat131 and D17Rat50 in the distal end of rat Chr 17. The swh locus spanned the 3.7-Mb genomic region where 24 genes have been mapped and corresponded to the centromere region of the mouse Chr 2 or the region of the human Chr 10p11.1-p14. None of the genes or loci described in mouse or human hair and skin diseases mapped to these regions. These findings suggest that the rat swh is a novel mutation associated with impaired development of the skin appendages, such as hair follicles, sebaceous glands, and mammary glands, and will provide an experimental model to clarify a gene and mechanisms for development of skin appendages.  相似文献   

13.
The skin of the golden spider monkey (Ateles geoffroyi) has many histological and histochemical similarities to that of the woolly monkey (Lagothrix lagotricha) and howler monkey (Alouatta caraya); however, this monkey possesses certain peculiar properties such as large sebaceous glands, a combined distributional pattern of eccrine and apocrine sweat glands, and abundant alkaline phosphatase in the sebaceous glands, apocrine and eccrine sweat glands. In brief, the anatomical and histochemical properties of the skin of this animal are more similar to those of the howler monkey than to the woolly monkey. In addition, the skin of these three Ceboids falls phylogenetically between that of the Cercopithecoidea and Pithecoidea.  相似文献   

14.
The skin carries a number of appendages, including hair follicles and a range of glands, which develop under the influence of EDAR signalling. A gain of function allele of EDAR is found at high frequency in human populations of East Asia, with genetic evidence suggesting recent positive selection at this locus. The derived EDAR allele, estimated to have reached fixation more than 10,000 years ago, causes thickening of hair fibres, but the full spectrum of phenotypic changes induced by this allele is unknown. We have examined the changes in glandular structure caused by elevation of Edar signalling in a transgenic mouse model. We find that sebaceous and Meibomian glands are enlarged and that salivary and mammary glands are more elaborately branched with increased Edar activity, while the morphology of eccrine sweat and tracheal submucosal glands appears to be unaffected. Similar changes to gland sizes and structures may occur in human populations carrying the derived East Asian EDAR allele. As this allele attained high frequency in an environment that was notably cold and dry, increased glandular secretions could represent a trait that was positively selected to achieve increased lubrication and reduced evaporation from exposed facial structures and upper airways.  相似文献   

15.
The skin of Saguinus (= Oedipomidas) oedipus Linnaeus, is basically similar to that of the red-mantled tamarin, Saguinus (= Tamarinus) fuscicollis Spix; it has several peculiarities: (1) a circumscribed tuft of vibrissae on the ulnar aspect of the wrist; (2) an accumulation of apocrine glands over the sternum; and (3) an extensive posterior abdominal field of gigantic sebaceous glands admixed with large apocrine glands, better developed in the female. The epidermis, dermis, hair follicles, sebaceous ducts, and apocrine excretory ducts are all heavily pigmented. Hairs are arranged in linear perfect sets; the epithelial sac of quiescent follicles is devoid of glycogen and phosphorylase. Eccrine sweat glands are restricted to the volar friction surfaces and contain no glycogen. Only the coiled excretory ducts of the eccrine glands contain phosphorylase. All cutaneous nerve fibers are more reactive for acetylthan butyrylcholinesterase.  相似文献   

16.
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5–20.5, postanal day (P) 1–14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1–P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.  相似文献   

17.
Retinoic acid (RA) signalling is essential for epidermal differentiation; however, the mechanisms by which it acts are largely unexplored. Partitioning of RA between different nuclear receptors is regulated by RA-binding proteins. We show that cellular RA-binding proteins CRABP1 and CRABP2 and the fatty acid-binding protein FABP5 are dynamically expressed during skin development and in adult tissue. CRABP1 is expressed in embryonic dermis and in the stroma of skin tumours, but confined to the hair follicle dermal papilla in normal postnatal skin. CRABP2 and FABP5 are expressed in the differentiating cells of sebaceous gland, interfollicular epidermis and hair follicles, with FABP5 being a prominent marker of sebaceous glands and anagen follicle bulbs. All three proteins are upregulated in response to RA treatment or Notch activation and are negatively regulated by Wnt/β-catenin signalling. Ectopic follicles induced by β-catenin arise from areas of the sebaceous gland that have lost CRABP2 and FABP5; conversely, inhibition of hair follicle formation by N-terminally truncated Lef1 results in upregulation of CRABP2 and FABP5. Our findings demonstrate that there is dynamic regulation of RA signalling in different regions of the skin and provide evidence for interactions between the RA, β-catenin and Notch pathways.  相似文献   

18.
In isolated sweat glands, bumetanide inhibits sweat secretion. The mRNA encoding bumetanide-sensitive Na+-K+-Cl cotransporter (NKCC) isoform 1 (NKCC1) has been detected in sweat glands; however, the cellular and subcellular protein localization is unknown. Na+/H+ exchanger (NHE) isoform 1 (NHE1) protein has been localized to both the duct and secretory coil of human sweat duct; however, the NHE1 abundance in the duct was not compared with that in the secretory coil. The aim of this study was to test whether mRNA encoding NKCC1, NKCC2, and Na+-coupled acid-base transporters and the corresponding proteins are expressed in rodent sweat glands and, if expressed, to determine the cellular and subcellular localization in rat, mouse, and human eccrine sweat glands. NKCC1 mRNA was demonstrated in rat palmar tissue, including sweat glands, using RT-PCR, whereas NKCC2 mRNA was absent. Also, NHE1 mRNA was demonstrated in rat palmar tissue, whereas NHE2, NHE3, NHE4, electrogenic Na+-HCO3 cotransporter 1 NBCe1, NBCe2, electroneutral Na+-HCO3 cotransporter NBCn1, and Na+-dependent Cl/HCO3 exchanger NCBE mRNA were not detected. The expression of NKCC1 and NHE1 proteins was confirmed in rat palmar skin by immunoblotting, whereas NKCC2, NHE2, and NHE3 proteins were not detected. Immunohistochemistry was performed using sections from rat, mouse, and human palmar tissue. Immunoperoxidase labeling revealed abundant expression of NKCC1 and NHE1 in the basolateral domain of secretory coils of rat, mouse, and human sweat glands and low expression was found in the coiled part of the ducts. In contrast, NKCC1 and NHE1 labeling was absent from rat, mouse, and human epidermis. Immunoelectron microscopy demonstrated abundant NKCC1 and NHE1 labeling of the basolateral plasma membrane of mouse sweat glands, with no labeling of the apical plasma membranes or intracellular structures. The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na+-coupled acid-base transport. bumetanide; eccrine glands; immunohistochemistry; immunoblotting  相似文献   

19.
1. Various amounts of beta-glucuronidase activity may be found in all of the cutaneous appendages. 2. In the epidermis, the basal layer and the Malpighian layer contain a moderate amount of it, but a band of cells, including the stratum granulosum and the cells immediately above it, is rich in beta-glucuronidase. 3. The cells of the duct of eccrine sweat glands have moderately strong enzyme activity, but those in the secretory coil are strongly reactive; small and large reactive granules are crowded in the reactive cytoplasm. 4. The cells of the secretory coil of the apocrine glands contain more beta-glucuronidase than any other cutaneous appendage. 5. In the sebaceous glands, a very strong concentration of enzyme activity is found in the undifferentiated peripheral cells, a smaller amount of it is found in the differentiating cells. 6. In active hair follicles, the largest amount of beta-glucuronidase is found in the outer root sheath and in the bulb. In the outer sheath, the strongest concentration is found around the level of the keratogenous zone of the cortex. The dermal papilla is strongly reactive. In quiescent hair follicles, the outer root sheath has a moderate amount of enzyme concentration, but the dermal papilla is unreactive. 7. In the dermis, the fibroblasts in the papillary layer, the smooth muscle cells of the arrectores pilorum and the tunica media of arteries, and the fat cells all exhibit enzyme activity. Mast cells show a great concentration of beta-glucuronidase.  相似文献   

20.
Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号