首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F1 alpha. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 microgram/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 microgram/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolases are independently regulated.  相似文献   

2.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 μg/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 μg/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolyses are independently regulated.  相似文献   

3.
Macrophages isolated from the peritoneal cavity of untreated mice and maintained in tissue culture synthesize and release prostaglandins when challenged with zymosan. These cells also selectively release lysosomal acid hydrolases under the same conditions. The major prostaglandins released into the media are found to be prostaglandins E1, E2 and 6-oxoprostaglandin F1a, whereas prostaglandin F2a is not detected. Macrophages isolated from mice that have received an intraperitoneal injection of thioglycollate broth are far less responsive to zymosan challenge. These cells require 300 microgram of zymosan to synthesize and release one-third the amount of prostaglandins released from non-stimulated macrophages exposed to 50 microgram of zymosan. In addition, thioglycollate-stimulated macrophages release less than 10% of their lysosomal acid hydrolases when exposed to 300 microgram of zymosan whereas non-stimulated cells release approximately 50% of these enzymes after treatment with 50 microgram of zymosan. The zymosan-stimulated synthesis and release of prostaglandins are completely inhibited by indomethacin, whereas the increased selective release of lysosomal acid hydrolases is not affected. Macrophages, unlike fibroblasts, do not synthesize and release prostaglandins when exposed to serum or to bradykinin.  相似文献   

4.
Endothelial injury has been proposed as a feature of a wide variety of vascular diseases, and release of endothelial lysosomal hydrolases could contribute to the pathological changes seen. We have determined the relative activities of 14 glycosidases, two esterases and four peptide hydrolases in human umbilical vein endothelial cells and investigated whether known agonists of endothelial function, or materials known to modulate hydrolase secretion in other phagocytic cells, influenced the activity or secretion of these enzymes by human umbilical vein endothelial cells. Hexosaminidase, beta-galactosidase, beta-glucuronidase and alpha-iduronidase accounted for most of the measured glycosidase activity. Acid phosphatase activity greatly exceeded arylsulphatase activity, and most of the measured peptidase activity was due to acid peptidases. Optimum pH and apparent Km values were determined for the most abundant hydrolases. Exposure of human umbilical vein endothelial cells to bradykinin, thrombin or interleukin-1 resulted in negligible release of either hexosaminidase or lactate dehydrogenase (LDH), in contrast to phorbol myristate acetate, which caused a parallel, dose-dependent release of both enzymes. Treatment of these cells with calcium ionophore A23187, trypsin or platelet-activating factor, caused less than 10% release of either hexosaminidase or LDH. Agents known to modulate lysosomal enzyme secretion by other phagocytic cells failed to induce selective secretion of lysosomal enzymes by human umbilical vein endothelial cells.  相似文献   

5.
Leukocyte complement: interleukin-like properties of factor Bb   总被引:1,自引:0,他引:1  
It has been previously shown that the activated form of Factor B (Factor Bb) of the alternative pathway of complement activation stimulates monocyte spreading and killing of xenogenic erythrocytes and staphylococci. Factor Bb also stimulates lymphocyte blastogenesis in vitro, and native (uncleaved) Factor B is a major constitutive product of murine macrophages. To evaluate the possible "monokine" or "lymphokine"-like properties of Factor Bb, a radioimmunoassay was developed to measure the quantities of Factor B in phytohemagglutinin (PHA)-mitogen-stimulated cultures of human peripheral blood mononuclear cells. Nonstimulated mononuclear cell cultures from human peripheral blood (containing 10-14% monocytes and greater than 85% lymphocytes) at a density of 3 X 10(6) cells/ml (in serum-free medium) released less than 7 X 10(-10) M/liter (60 ng/ml) of Factor B antigen in 24 hr at 37 degrees C, and when mononuclear cells were stimulated with PHA mitogen in serum-free medium, the levels of Factor B antigen in media at 24 hr were significantly higher 1-3 X 10(-8) M/liter (0.9-2.8 micrograms/ml). The molecular size of Factor B in these media was 50-65 kDa by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a size appropriate for Factor Bb (60 kDa). Since pathological effects of macrophages in autoimmune disease may result from the release of lysosomal hydrolases, the effects of purified Factor Bb on mononuclear phagocytes were investigated in an in vitro system of murine peritoneal exudate macrophages. Factor Bb induced secretion of marker lysosomal hydrolases N-acetyl-beta-D-glucosaminidase (hexosaminidase) and beta-glucuronidase from thioglycollate-elicited murine peritoneal exudate macrophages in a dose-response and kinetic manner. Hydrolase release was induced in serum-free medium without a known particulate activator at a concentration of 80-200 nM (5-13 micrograms/ml) Factor Bb. Maximal release occurred in 3-5 hr at 37 degrees C and extracellular enzyme activity of hexosaminidase and glucuronidase increased as intracellular enzyme levels decreased, suggesting that Factor Bb triggers release of these enzymes from intracellular lysosomal pools. These results provide an example of a complement protein which is synthesized, released, and activated during mononuclear cell culture and which induces release of lysosomal enzymes from macrophages. In conventional terminology, Factor B or Factor Bb might be termed a "lymphokine," "monokine," or "interleukin".  相似文献   

6.
Macrophages express a mannose-specific pinocytosis receptor that binds and internalizes lysosomal hydrolases. Treatment of rat bone marrow-derived macrophages with dexamethasone resulted in a concentration- and time-dependent increase in mannose-receptor activity. The dexamethasone effect was maximal at 24 h. Half-maximal effects were observed at a dexamethasone concentration of 2.5 X 10(-9) M. With 125I-beta-glucuronidase as ligand, a 2.5-fold increase in uptake rate was observed in dexamethasone-treated cells, with no change in Kuptake (2.5 X 10(-7) M beta-glucuronidase). Cell surface binding (4 degrees C) was elevated 2.6-fold following dexamethasone treatment. The increase in ligand binding appeared to be due to an increase in number of sites with no change in affinity. Cycloheximide suppressed the dexamethasone-mediated rise in receptor number, while cycloheximide alone had little effect on receptor activity over 16 h. These results suggest that dexamethasone stimulates synthesis of mannose receptors in macrophages. Extracellular accumulation of hexosaminidase was sharply reduced by dexamethasone treatment, and corresponded with the rise in mannose-receptor activity. Extracellular levels of hexosaminidase from untreated macrophages were modestly increased by the presence of mannan, while the extracellular activity from dexamethasone-treated cells was increased significantly by mannan. Extracellular hexosaminidase, released from zymosan-treated macrophages, was dramatically reduced by dexamethasone pretreatment. Enzyme released from zymosan-stimulated macrophages was efficiently endocytosed by dexamethasone-treated cells in co-culture experiments, and this endocytosis was blocked by the addition of mannan. These results suggest that the mannose receptor of macrophages may play a role in regulating extracellular levels of lysosomal enzymes via a secretion-recapture mechanism.  相似文献   

7.
Secretion of the lysosomal enzyme hexosaminidase induced by zymosan is inhibited by mannose and by high concentrations of mannose-6-phosphate and 2-deoxy-glucose but not by mannan. Secretion of hexosaminidase from cells storing previously endocytosed zymosan is unaffected by mannose. Exposure of the cells to mannose does not affect secretion caused by subsequent exposure to zymosan. These findings suggest a role for the mannose-glycoprotein receptor in initiation of lysosomal enzyme secretion by zymosan.  相似文献   

8.
By utilizing compounds with different inhibitory properties, discrete biochemical differences were found in the mechanism of selective lysosomal enzyme secretion by macrophages in response to stimulation with zymosan particles and methylamine. Pretreatment of macrophages with trypsin markedly impaired the capacity of the cells to respond to stimulation with zymosan particles, but had no effect on methylamine-stimulated lysosomal enzyme secretion. Similarly, the addition of phenylmethanesulphonyl fluoride or EDTA to the incubation medium substantially inhibited zymosan-induced lysosomal enzyme secretion, whereas the methylamine-stimulated response was unaffected by these agents. The addition of 2-deoxyglucose to incubation media, however, strongly inhibited both zymosan- and methylamine-stimulated beta-galactosidase secretion. These findings are consistent with a mechanism for lysosomal enzyme secretion by macrophages, based on a receptor-dependent uptake of zymosan particles and a receptor-independent uptake of methylamine.  相似文献   

9.
Antitumor mAb bind to tumors and activate complement, coating tumors with iC3b. Intravenously administered yeast beta-1,3;1,6-glucan functions as an adjuvant for antitumor mAb by priming the inactivated C3b (iC3b) receptors (CR3; CD11b/CD18) of circulating granulocytes, enabling CR3 to trigger cytotoxicity of iC3b-coated tumors. Recent data indicated that barley beta-1,3;1,4-glucan given orally similarly potentiated the activity of antitumor mAb, leading to enhanced tumor regression and survival. This investigation showed that orally administered yeast beta-1,3;1,6-glucan functioned similarly to barley beta-1,3;1,4-glucan with antitumor mAb. With both oral beta-1,3-glucans, a requirement for iC3b on tumors and CR3 on granulocytes was confirmed by demonstrating therapeutic failures in mice deficient in C3 or CR3. Barley and yeast beta-1,3-glucan were labeled with fluorescein to track their oral uptake and processing in vivo. Orally administered beta-1,3-glucans were taken up by macrophages that transported them to spleen, lymph nodes, and bone marrow. Within the bone marrow, the macrophages degraded the large beta-1,3-glucans into smaller soluble beta-1,3-glucan fragments that were taken up by the CR3 of marginated granulocytes. These granulocytes with CR3-bound beta-1,3-glucan-fluorescein were shown to kill iC3b-opsonized tumor cells following their recruitment to a site of complement activation resembling a tumor coated with mAb.  相似文献   

10.
Purified C5a and its "inactive" form, C5a des-arg, were shown to induce secretion of acid hydrolases from rabbit alveolar macrophages (AM) in a concentration-dependent manner. Secretion increased with time to 5 times above controls by 72 hr. Concentrations of these enzymes in the cell lysates did not decrease during the incubation, suggesting that synthesis of new enzyme was occurring. The lysosomal enzyme secretion was accompanied by increased pinocytosis and release of proteolytic enzymes from the macrophages. At no time was significant lactic dehydrogenase liberated, indicating that secretion was selective and not due to cell death. Data presented also suggest that C5a des-arg induced secretion from the macrophages of a chemotactic factor for neutrophils. It was concluded that C5a and C5a des-arg may play a role in lung injury by interactions with AM, inducing the secretion of acid hydrolases and proteolytic enzymes that can cause tissue damage, and by regulating the influx of other inflammatory cells into the interstitium and air spaces.  相似文献   

11.
Primary microcultures of human amnion epithelial cells were established, starting from sterile term placentae. Over a period of 1 week in culture, the epithelial cells release into the extracellular medium substantial amounts of some lysosomal hydrolases, such as sphingomyelinase, N-acetyl-beta-glucosaminidase, alpha-fucosidase, beta-glucuronidase, alpha-mannosidase, and arylsulfatase. Judging from experiments conducted with the protein synthesis inhibitor, cycloheximide, the enzymes released are not newly synthesized forms, but very likely derive from lysosomes. The constitutive secretion of lysosomal enzymes, coupled with lack of immunogenicity, makes amnion epithelial cells a convenient source of enzymes for implantation in attempts of enzyme replacement therapies.  相似文献   

12.
The effect of swainsonine, an inhibitor of Golgi alpha-mannosidase II and lysosomal alpha-mannosidase, on the synthesis, processing, and turnover of two glycoproteins, lysosomal beta-galactosidase and lysosomal beta-glucuronidase, has been studied in cultured mouse peritoneal macrophages. No effect of the inhibitor on the relative rates of synthesis of the precursor form of either enzyme was observed. On the other hand, carbohydrate processing of beta-galactosidase and beta-glucuronidase was markedly altered by swainsonine, consistent with a blockage by the inhibitor of the removal of the alpha-1,3- and alpha-1,6-linked mannose residues which occurs in normal processing. In homogenates of both normal and swainsonine-treated cells, the precursor forms of the enzymes were found exclusively in the light membrane fraction on Percoll gradients and the mature forms exclusively in the lysosomal fractions indicating that translocation from Golgi to lysosomes and proteolytic processing in the lysosome were not impaired by the presence of abnormal oligosaccharide side chains. There was no detectable effect of swainsonine during a 4-day chase period on the total cellular turnover of these enzymes which involves two processes, secretion and degradation. In the absence of swainsonine, secretion represented about 40% of the total turnover of beta-galactosidase and about 50% with beta-glucuronidase. The presence of swainsonine increased these proportions to about 60 and 70%, respectively.  相似文献   

13.
The phospholipids of rabbit alveolar macrophages were pulse-labelled with [(14)C]-arachidonic acid, and the subsequent release of labelled prostaglandins was measured. Resting macrophages released measurable amounts of arachidonic acid, the prostaglandins E(2), D(2) and F(2alpha) and 6-oxoprostaglandin F(1alpha). Phagocytosis of zymosan increased the release of arachidonic acid and prostaglandins to 2.5 times the control value. In contrast, phagocytosis of inert latex particles had no effect on prostaglandin release. Indomethacin inhibited the release of prostaglandin, and, at high doses (20mug/ml), increased arachidonic acid release. Analysis of the cellular lipids showed that after zymosan stimulation the proportion of label was decreased in phosphatidylcholine, but not in other phospholipids or neutral lipids. Cytochalasin B, at a dose of 2mug/ml, inhibited the phagocytosis induced by zymosan but increased prostaglandin synthesis to 3.4 times the control. These data suggest that the stimulation of prostaglandin synthesis by zymosan is not dependent on phagocytosis. Exposure to zymosan also resulted in the release of the lysosomal enzyme, acid phosphatase. Furthermore, cytochalasin B augmented the zymosan-stimulated release of acid phosphatase at the same dose that stimulated prostaglandin synthesis. However, indomethacin, at a dose that completely inhibited prostaglandin synthesis, failed to block the lysosomal enzyme release. Thus despite some parallels between the release of prostaglandins and lysosomal enzymes, endogenous prostaglandins do not appear to mediate the release of lysosomal enzymes. The prostaglandins released from the macrophages may function as humoral substances affecting other cells.  相似文献   

14.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

15.
Lippert U  Ferrari DM  Jahn R 《FEBS letters》2007,581(18):3479-3484
Mast cells are important players in innate immunity and mediate allergic responses. Upon stimulation, they release biologically active mediators including histamine, cytokines and lysosomal hydrolases. We used permeabilized rat basophilic leukaemia cells as model to identify R-SNAREs (soluble NSF (N-ethylmaleimide-sensitive fusion protein)) mediating exocytosis of hexosaminidase from mast cells. Of a complete set of recombinant mammalian R-SNAREs, only vesicle associated membrane protein (VAMP8)/endobrevin consistently blocked hexosaminidase release, which was also insensitive to treatment with clostridial neurotoxins. Thus, VAMP8, which also mediates fusion of late endosomes and lysosomes, plays a major role in hexosaminidase release, strengthening the view that mast cell granules share properties of both secretory granules and lysosomes.  相似文献   

16.
Cultured mouse peritoneal macrophages containing previously endocytosed zymosan or small-fibre asbestos (but not latex or sucrose) were shown to release selectively into the medium the lysosomal hydrolase beta-N-acetylglucosaminidase. Thus macrophage lysosomal enzyem secretion was experimentally dissociated from endocytosis (as the residual external particles were washed away from the cells). The cells remained viable, and total activities of both N-acetyl-beta-D-glucosaminidase and of lactate dehydrogenase (a cytosol enzyme) rose with time. The relevance of such secretion by macrophages containing stored materials to chronic inflammatory processes is discussed.  相似文献   

17.
We have previously shown that several agents which interfere with binding of ligands to the mannose-glycoprotein receptor on macrophages can inhibit zymosan-induced lysosomal enzyme secretion. Here we show that mannose only reduces the association of zymosan with macrophages during the first hour of exposure; after longer periods of uptake no effect is detectable. We have previously shown that mannose reduces surface binding of zymosan, probably by interfering selectively with binding to the mannose receptor. The present inhibition of association of zymosan with macrophages during short exposures can be entirely explained by this reduction of binding. Macrophages must therefore internalize zymosan at sites in addition to the mannose receptor. In contrast to macrophages the murine macrophage-like cell line P388D1 is lacking the mannose-glycoprotein receptor. Accordingly we find that binding of zymosan to P388D1 is much slighter than to macrophages and is unaffected by mannose or mannose-6-phosphate. The spontaneous lysosomal enzyme secretion of P388D1 is also unaffected by mannose. The data on macrophages confirm our previous suggestion that agents interfering with the mannose receptor inhibit the induction of lysosomal enzyme secretion by acting directly on the receptor. The data on P388D1 cells support this assertion by excluding effects at later steps in the secretory pathway.  相似文献   

18.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

19.
A mutation in Aspergillus nidulans led to a loss of both melanin and alpha-(1,3)-glucan, a major wall polysaccharide. In addition, the mutation prevented the formation of cleistothecia. Mutant walls contained increased amounts of beta-(1,3)-glucan and galactose polymers, and electron micrographs indicated that they had lost the outermost wall layer. Such walls were more readily digested by lytic enzymes, and this increased susceptibility to hydrolysis was due to the absence of alpha-(1,3)-glucan and not of melanin. The pleiotropic effects of the mutation are discussed, with particular reference to the hypothesis that alpha-(1,3)-glucan acts as the endogenous carbon source for biosynthetic processes in the stationary phase of growth. In this view, glucan synthesis would be the primary target of the mutation, and the absence of glucan would result in the lack of melanin and cleistothecia, formed after nutrients are exhausted. Two other mutations that lowered themycelial alpha-(1,3)-glucan content also inhibited melanin and cleistothecia production.  相似文献   

20.
Histoplasma capsulatum is a dimorphic fungus that causes respiratory and systemic disease and is capable of surviving and replicating within macrophages. The virulence of Histoplasma has been linked to cell wall alpha-(1,3)-glucan; however, the role of this polysaccharide during infection, its organization within the cell wall, and its synthesis and regulation remain poorly understood. To identify genes involved in the biosynthesis of alpha-(1,3)-glucan, we employed a forward genetics strategy to isolate physically marked mutants with reduced alpha-(1,3)-glucan. Insertional mutants were generated in a virulent strain of H. capsulatum by optimization of Agrobacterium tumefaciens-mediated transformation. Approximately 90% of these mutants possessed single insertions with no chromosomal rearrangements or deletions in the host genome. To confirm the role and specificity of identified candidate genes, we phenocopied the disrupted locus by either RNA interference or targeted gene deletion. Our findings indicate alpha-(1,3)-glucan production requires the function of the AMY1 gene product, a novel protein with homology to the alpha-amylase family of glycosyl hydrolases, and UGP1, a UTP-glucose-1-phosphate uridylyltransferase which synthesizes UDP-glucose monomers. Loss of AMY1 function attenuated the ability of Histoplasma to kill macrophages and to colonize murine lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号