首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The RCC1 gene has been isolated from several vertebrates, including human, hamster and Xenopus. Genes similar to RCC1, namely BJ1 and SRM1/PRP20, have been isolated from the insect Drosophila and from the budding yeast Saccharomyces cerevisiae. A mutation of the RCC1 gene in the hamster BHK21 cell line, tsBN2, confers pleiotropic phenotypes, including G1 arrest and premature induction of mitosis in cells synchronized at the G1/S boundary. Similarly, mutations of the SRM1/PRP20 gene are pleiotropic; the srm1 mutant shows G1 arrest and suppression of the mating defect of mutants lacking pheromone receptors, and the prp20 mutant shows an alteration in mRNA metabolism. Here we show that both BJ1 and SRM1/PRP20 complement the temperature sensitive phenotype of the tsBN2 cells. Like RCC1 proteins of vertebrates, the protein products of the Drosophila and yeast RCC1 homologues were located in the nuclei of the mammalian cells. These results suggest that the BJ1 and SRM1/PRP20 genes are functionally equivalent to the vertebrate RCC1 genes, and that the RCC1 gene plays an important role in the regulation of gene expression in the eukaryotic cell cycle.  相似文献   

3.
4.
5.
WBSCR16 (Williams‐Beuren Syndrome Chromosomal Region 16) gene is located in a large deletion region of Williams‐Beuren syndrome (WBS), which is a neurodevelopmental disorder. Although the relationship between WBSCR16 and WBS remains unclear, it has been reported that WBSCR16 is a member of a functional module that regulates mitochondrial 16S rRNA abundance and intra‐mitochondrial translation. WBSCR16 has RCC1 (Regulator of Chromosome Condensation 1)‐like amino acid sequence repeats but the function of WBSCR16 appears to be different from that of other RCC1 superfamily members. Here, we demonstrate that WBSCR16 localizes to mitochondria in HeLa cells, and report the crystal structure of WBSCR16 determined to 2.0 Å resolution using multi‐wavelength anomalous diffraction. WBSCR16 adopts the seven‐bladed β‐propeller fold characteristic of RCC1‐like proteins. A comparison of the WBSCR16 structure with that of RCC1 and other RCC1‐like proteins reveals that, although many of the residues buried in the core of the β‐propeller are highly conserved, the surface residues are poorly conserved and conformationally divergent.  相似文献   

6.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of ~ 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

7.
真核细胞中染色体浓缩调节因子(regulator of chromosome condensation 1, RCC1)是 RanGTPase 唯一的鸟嘌呤核苷酸交换因子. 染色质结合的RCC1和RanGTPase相互作用,催化细胞核内RanGDP向RanGTP的转化,进而调控了核质间的定向运送、有丝分裂期纺锤体的组装以及核膜的形成. 本实验从原生生物嗜热四膜虫大核基因组中鉴定了1个新的RCC1(TTHERM_00530380)基因. 该基因全长2 541 bp,包含2个内含子序列,开放阅读框为2 181 bp,编码726个氨基酸. 实时荧光定量PCR表明,RCC1在四膜虫营养生长、饥饿以及有性生殖时期都有表达,且在有性生殖转录水平达到最高. 免疫荧光定位分析表明, HA RCC1在营养生长和饥饿时期,定位于大核和小核中|在有性生殖时期,定位于亲本大核、减数分裂的小核、新生成的大核和凋亡的大核中. 过表达RCC1导致大核的无丝分裂异常, 细胞增殖变慢,最终产生无大核的后代细胞. 敲减RCC1导致了多小核的产生. 结果表明,RCC1参与调控了四膜虫细胞核的分裂, RCC1的正常表达对核分裂以及细胞增殖起到重要的调控作用.  相似文献   

8.
At the nonpermissive temperature, premature chromosome condensation (PCC) occurs in tsBN2 cells derived from the BHK cell line, which can be converted to the Ts+ phenotype by the human RCC1 gene. To prove that the RCC1 gene is the mutant gene in tsBN2 cells, which have RCC1 mRNA and protein of the same sizes as those of BHK cells, RCC1 cDNAs were isolated from BHK and tsBN2 cells and sequenced to search for mutations. The hamster (BHK) RCC1 cDNA encodes a protein of 421 amino acids homologous to the human RCC1 protein. In a comparison of the base sequences of BHK and BN2 RCC1 cDNAs, a single base change, cytosine to thymine (serine to phenylalanine), was found in the 256th codon of BN2 RCC1 cDNA. The same transition was verified in the RCC1 genomic DNA by the polymerase chain reaction method. BHK RCC1 cDNA, but not tsBN2 RCC1 cDNA, complemented the tsBN2 mutation, although both have the same amino acid sequence except for one amino acid at the 256th codon. This amino acid change, serine to phenylalanine, was estimated to cause a profound structural change in the RCC1 protein.  相似文献   

9.
Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran’s guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued by further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.  相似文献   

10.
Fission yeast ptr1-1 is one of the mRNA transport mutants that accumulate poly(A)+ RNA in the nuclei at the nonpermissive temperature. We found that the ptr1+ gene encodes a homolog of Saccharomyces cerevisiae Tom1p, a hect type ubiquitin ligase. In ptr1-1, a conserved amino acid in the hect domain of Ptr1p is mutated. The ptr1+ gene is essential for growth and its mutation did not affect nuclear protein export. A ptr1-1 rae1-167 double mutant showed a synthetic effect on a growth defect, indicating that Ptr1p functionally interacts with an essential mRNA export factor Rae1p. We also isolated a multi-copy suppressor for ptr1-1 and found that it is the mpd2+ gene isolated as a multi-copy suppressor of cdc7-PD1.  相似文献   

11.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

12.
13.
RCC1 is the only known guanine nucleotide exchange factor for the small GTPase Ran and is normally found inside the nucleus bound to chromatin. In order to analyze in more detail the nuclear import of RCC1, we created a fusion construct in which four IgG binding domains of protein A were fused to the amino terminus of human RCC1 (pA-RCC1). Surprisingly, we found that neither Xenopus ovarian cytosol nor a mixture of recombinant import factors (karyopherin alpha2, karyopherin beta1, Ran, and p10/NTF2) were able to support the import of pA-RCC1 into the nuclei of digitonin-permeabilized cells. Both, in contrast, were capable of supporting the import of a construct containing another classical nuclear localization sequence (NLS), glutathione S-transferase-green fluorescent protein-NLS. Subsequently, we found that only one of the NLS receptors, karyopherin alpha3 (Kapalpha3/Qip), would support significant nuclear import of pA-RCC1 in permeabilized cells, while members of the other two main classes, Kapalpha1 and Kapalpha2, would not. Accordingly, in vitro binding studies revealed that only Kapalpha3 showed significant binding to RCC1 (unlike Kapalpha1 and Kapalpha2) and that this binding was dependent on the basic amino acids present in the RCC1 NLS. In addition to Kapalpha3, we found that the nuclear import of pA-RCC1 also required both karyopherin beta1 and Ran.  相似文献   

14.
15.
The META1 gene of Leishmania is upregulated in metacyclic promastigotes and encodes a 12 kDa virulence-related protein, conserved in all Leishmania species analysed. In this study, the genomic region adjacent to the Leishmania amazonensis META1 gene was characterised and compared to the Leishmania major META1 locus as well as to syntenic loci identified in Trypanosoma brucei and Trypanosoma cruzi. Three new genes expressed with increased abundance of steady state mRNA in L. amazonensis promastigotes were identified, two of which are upregulated in stationary phase promastigotes, sharing the pattern of expression previously described for the META1 mRNA. One of these new genes, named META2, encodes a polypeptide of 444 amino acid residues with a repetitive structure showing three repeats of the META domain (defined as a small domain family found in the Leishmania META1 protein and in bacterial proteins hypothetically secreted and/or implicated in motility) and a carboxyl-terminal region similar to several putative calpain-like proteins of Trypanosoma and Leishmania.  相似文献   

16.
17.
RCC1, a regulator of mitosis, is essential for DNA replication.   总被引:25,自引:4,他引:21       下载免费PDF全文
Temperature-sensitive mutants in the RCC1 gene of BHK cells fail to maintain a correct temporal order of the cell cycle and will prematurely condense their chromosomes and enter mitosis at the restrictive temperature without having completed S phase. We have used Xenopus egg extracts to investigate the role that RCC1 plays in interphase nuclear functions and how this role might contribute to the known phenotype of temperature-sensitive RCC1 mutants. By immunodepleting RCC1 protein from egg extracts, we find that it is required for neither chromatin decondensation nor nuclear formation but that it is absolutely required for the replication of added sperm chromatin DNA. Our results further suggest that RCC1 does not participate enzymatically in replication but may be part of a structural complex which is required for the formation or maintenance of the replication machinery. By disrupting the replication complex, the loss of RCC1 might lead directly to disruption of the regulatory system which prevents the initiation of mitosis before the completion of DNA replication.  相似文献   

18.
The psbD mRNA, which encodes the D2 reaction center polypeptide of photosystem II, is one of the most abundant chloroplast mRNAs. We have used genomic complementation to isolate the nuclear Nac2 gene, which is required for the stable accumulation of the psbD mRNA in Chlamydomonas reinhardtii. Nac2 encodes a hydrophilic polypeptide of 1385 amino acids with nine tetratricopeptide-like repeats (TPRs) in its C-terminal half. Cell fractionation studies indicate that the Nac2 protein is localized in the stromal compartment of the chloroplast. It is part of a high molecular weight complex that is associated with non-polysomal RNA. Change of a conserved alanine residue of the fourth TPR motif by site-directed mutagenesis leads to aggregation of Nac2 protein and completely abrogates its function, indicating that this TPR is important for proper folding of the protein and for psbD mRNA stability, processing and/or translation.  相似文献   

19.
20.
A carbohydrate-rich, fat-free diet dramatically alters the higher-order chromatin structure of rat liver nuclei. In addition, the mRNA level of the phenotypic protein of liver, albumin, is reduced. Within 200 base pairs of the initiation site of the albumin mRNA, a histone H1-binding site has been mapped. Histone H1 is the higher-order architectural protein of chromosomes. The presence of H1 with nucleosomes that package albumin gene sequences implies the presence of H1 in template-active chromatin. The role histone H1 has on the architecture of active genes may be a fundamental level of gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号