首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sulfite oxidase (EC 1.8.3.1) from the plant Arabidopsis thaliana is the smallest eukaryotic molybdenum enzyme consisting of a molybdenum cofactor-binding domain but lacking the heme domain that is known from vertebrate sulfite oxidase. While vertebrate sulfite oxidase is a mitochondrial enzyme with cytochrome c as the physiological electron acceptor, plant sulfite oxidase is localized in peroxisomes and does not react with cytochrome c. Here we describe results that identified oxygen as the terminal electron acceptor for plant sulfite oxidase and hydrogen peroxide as the product of this reaction in addition to sulfate. The latter finding might explain the peroxisomal localization of plant sulfite oxidase. 18O labeling experiments and the use of catalase provided evidence that plant sulfite oxidase combines its catalytic reaction with a subsequent non-enzymatic step where its reaction product hydrogen peroxide oxidizes another molecule of sulfite. In vitro, for each catalytic cycle plant SO will bring about the oxidation of two molecules of sulfite by one molecule of oxygen. In the plant, sulfite oxidase could be responsible for removing sulfite as a toxic metabolite, which might represent a means to protect the cell against excess of sulfite derived from SO2 gas in the atmosphere (acid rain) or during the decomposition of sulfur-containing amino acids. Finally we present a model for the metabolic interaction between sulfite and catalase in the peroxisome.  相似文献   

2.
3.
4.
5.
In the present study, the significance of sulfite oxidase (SO) for sulfite detoxification and sulfur assimilation was investigated. In response to sulfur dioxide (SO(2)) exposure, a remarkable expansion of sulfate and a significant increase of GSH pool were observed in wild-type and SO-overexpressing Arabidopsis. These metabolic changes were connected with a negative feedback inhibition of adenosine 5'-phosphosulfate reductase (APR), but no alterations in gas exchange parameters or visible symptoms of injury. However, Arabidopsis SO-KO mutants were consistently negatively affected upon 600 nL L(-1) SO(2) exposure for 60 h and showed phenotypical symptoms of injury with small necrotic spots on the leaves. The mean g(H2O) was reduced by about 60% over the fumigation period, accompanied by a reduction of net CO(2) assimilation and SO(2) uptake of about 50 and 35%. Moreover, sulfur metabolism was completely distorted. Whereas sulfate pool was kept constant, thiol-levels strongly increased. This demonstrates that SO should be the only protagonist for back-oxidizing and detoxification of sulfite. Based on these results, it is suggested that co-regulation of SO and APR controls sulfate assimilation pathway and stabilizes sulfite distribution into organic sulfur compounds. In conclusion, a sulfate-sulfite cycle driven by APR and SO can be postulated for fine-tuning of sulfur distribution that is additionally used for sulfite detoxification, when plants are exposed to atmospheric SO(2).  相似文献   

6.
Sulfite oxidizing enzymes   总被引:1,自引:0,他引:1  
Sulfite oxidizing enzymes are essential mononuclear molybdenum (Mo) proteins involved in sulfur metabolism of animals, plants and bacteria. There are three such enzymes presently known: (1) sulfite oxidase (SO) in animals, (2) SO in plants, and (3) sulfite dehydrogenase (SDH) in bacteria. X-ray crystal structures of enzymes from all three sources (chicken SO, Arabidopsis thaliana SO, and Starkeya novella SDH) show nearly identical square pyramidal coordination around the Mo atom, even though the overall structures of the proteins and the presence of additional cofactors vary. This structural information provides a molecular basis for studying the role of specific amino acids in catalysis. Animal SO catalyzes the final step in the degradation of sulfur-containing amino acids and is critical in detoxifying excess sulfite. Human SO deficiency is a fatal genetic disorder that leads to early death, and impaired SO activity is implicated in sulfite neurotoxicity. Animal SO and bacterial SDH contain both Mo and heme domains, whereas plant SO only has the Mo domain. Intraprotein electron transfer (IET) between the Mo and Fe centers in animal SO and bacterial SDH is a key step in the catalysis, which can be studied by laser flash photolysis in the presence of deazariboflavin. IET studies on animal SO and bacterial SDH clearly demonstrate the similarities and differences between these two types of sulfite oxidizing enzymes. Conformational change is involved in the IET of animal SO, in which electrostatic interactions may play a major role in guiding the docking of the heme domain to the Mo domain prior to electron transfer. In contrast, IET measurements for SDH demonstrate that IET occurs directly through the protein medium, which is distinctly different from that in animal SO. Point mutations in human SO can result in significantly impaired IET or no IET, thus rationalizing their fatal effects. The recent developments in our understanding of sulfite oxidizing enzyme mechanisms that are driven by a combination of molecular biology, rapid kinetics, pulsed electron paramagnetic resonance (EPR), and computational techniques are the subject of this review.  相似文献   

7.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

8.
Sulfite oxidation in plant peroxisomes   总被引:6,自引:0,他引:6  
For a long time, occurrence and nature of sulfite oxidase activity in higher plants were controversially discussed. During primary sulfate assimilation in the chloroplast, sulfate is reduced via sulfite to organic sulfide, which is essential for cysteine biosynthesis. However, it has also been reported that sulfite can be oxidized back to sulfate, e.g. when plants were subjected to SO2 gas. Recently, work from our laboratory has identified the sulfite oxidase as the fourth member of molybdenum-enzymes in plants. Here we discuss how nature separates the two counteracting pathways – sulfate assimilation and sulfite detoxification – into two different cell organelles and we will also discuss how these two processes are coregulated.  相似文献   

9.
Disproportionation of thiosulfate or sulfite to sulfate plus sulfide was found in several sulfate-reducing bacteria. Out of nineteen strains tested, eight disproportionated thiosulfate, and four sulfite. Growth with thiosulfate or sulfite as the sole energy source was obtained with three strains (Desulfovibrio sulfodismutans and the strains Bra02 and NTA3); additionally, D. desulfuricans strain CSN grew with sulfite but not with thiosulfate, although thiosulfate was disproportionated. Two sulfur-reducing bacteria, four phototrophic sulfur-oxidizing bacteria (incubated in the dark), and Thiobacillus denitrificans did not disproportionate thiosulfate or sulfite. Desulfovibrio sulfodismutans and D. desulfuricans CSN formed sulfate from thiosulfate or sulfite even when simultaneously oxidizing hydrogen or ethanol, or in the presence of 50 mM sulfate. The capacities of sulfate reduction and of thiosulfate and sulfite disproportionation were constitutively present. Enzyme activities required for sulfate reduction (ATP sulfurylase, pyrophosphatase, APS reductase, sulfite reductase, thiosulfate reductase, as well as adenylate kinase and hydrogenase) were detected in sufficient activities to account for the growth rates observed. ADP sulfurylase and sulfite oxidoreductase activities were not detected. Disproportionation was sensitive to the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) but not to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). It is proposed that during thiosulfate and sulfite disproportionation sulfate is formed via APS reductase and ATP sulfurylase, but not by sulfite oxidoreductase. Reversed electron transport must be assumed to explain the reduction of thiosulfate and sulfite by the electrons derived from APS reductase.Abbreviations CCCP Carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - APS adenosine 5-phosphosulfate (adenylylsulfate)  相似文献   

10.
Summary Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of thein situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidasesd-amino acid oxidase,l--hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.  相似文献   

11.
After SO2 has entered leaves of spinach (Spinacia oleracea) through open stomata and been hydrated in the aqueous phase of cell walls, the sulfite formed can be oxidized to sulfate by an apoplastic peroxidase that is normally involved in phenol oxidation. The oxidation of sulfite is competitive with the oxidation of phenolics. During sulfite oxidation, the peroxidase is inhibited. In the absence of ascorbate, which is a normal constituent of the aqueous phase of the apoplast, peroxidative sulfite oxidation facilitates fast additional sulfite oxidation by a radical chain reaction. By scavenging radicals, ascorbate inhibits chain initiation and sulfite oxidation. Even after exposure of leaves to high concentrations of SO2, which inhibited photosynthesis, the redox state of ascorbate remained almost unaltered in the apoplastic space of the leaves. It is concluded that the oxidative detoxification of SO2 in the apoplast outside the cells is slow. Its rate depends on the rate of apoplastic hydrogen peroxide generation and on the steady-state apoplastic concentrations of phenolics and sulfite. The affinity of the peroxidase for phenolics is higher than that for sulfite.  相似文献   

12.
Peroxiredoxins (Prxs) constitute a group of thiol-specific antioxidant enzymes which are present in bacteria, yeasts, and in plant and animal cells. Although Prxs are mainly localized in the cytosol, they are also present in mitochondria, chloroplasts, and nuclei, but there is no evidence of the existence of Prxs in plant peroxisomes. Using soluble fractions (matrices) of peroxisomes purified from leaves of pea (Pisum sativum L.) plants, the immunological analysis with affinity-purified IgG against yeast Prx1 revealed the presence of an immunoreactive band of about 50 kDa. The apparent molecular mass of the peroxisomal Prx was not sensitive to oxidizing and reducing conditions what could be a mechanism of protection against the oxidative environment existing in peroxisomes. Postembedment, EM immunocytochemical analysis with affinity-purified IgG against yeast Prx1 antibodies, confirmed that this protein was present in the peroxisomal matrix, mitochondria, and chloroplasts. In pea plants grown under oxidative stress conditions, the protein level of peroxisomal Prx was differentially modulated, being slightly induced by growth of plants with 50 µM CdCl2, but being significantly reduced by treatment with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The presence in the matrix of peroxisomes of a protein immunorelated to Prx of about 50 kDa, which is in the range of molecular mass of the dimeric form of other Prxs, opens new questions on the molecular properties of Prxs, but also on their function in the metabolism of reactive oxygen and nitrogen species (ROS/RNS) in these plant cell organelles, where they could be involved in the regulation of hydrogen peroxide and/or peroxynitrite.  相似文献   

13.
The peroxisome has long been known for its role in lipid metabolism and hydrogen peroxide detoxification. However, growing evidence supports the view that this organelle can also function both as an intracellular signaling compartment and as an organizing platform that orchestrates certain developmental decisions from inside the cell. This review highlights various strategies that peroxisomes employ to regulate the processes of development, differentiation, and morphogenesis and critically evaluates several molecular mechanisms by which peroxisomes promote these processes.  相似文献   

14.
Environmental stresses are often associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H2O2), superoxide radical (O2?), hydroxyl radical (OH?). In plants, ROS are formed by the inevitable leakage of electrons onto O2 from the electron transport activities of chloroplasts, mitochondria, peroxisomes, vacuole and plasma membranes or as a byproduct of various metabolic pathways. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature. Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses is a matter of investigation.  相似文献   

15.
The molybdenum cofactor (Moco) containing sulfite oxidase (SO) from Arabidopsis thaliana has recently been identified and biochemically characterized. The enzyme is found in peroxisomes and believed to detoxify excess sulfite that is produced during sulfur assimilation, or due to air pollution. Plant SO (PSO) is homodimeric and homologous to animal SO, but contains only a single Moco domain without an additional redox center. Here, we present the first crystal structure of a plant Moco enzyme, the apo-state of Arabidopsis SO at 2.6 A resolution. The overall fold and coordination of the Moco are similar to chicken SO (CSO). Comparisons of conserved surface residues and the charge distribution in PSO and CSO reveal major differences near the entrance to both active sites reflecting different electron acceptors. Arg374 has been identified as an important substrate binding residue due to its conformational change when compared to the sulfate bound structure of CSO.  相似文献   

16.
1. The primary intermediate of catalase and hydrogen peroxide was identified and investigated in peroxisome-rich mitochondrial fractions of rat liver. On the basis of kinetic constants determined in vitro, it is possible to calculate with reasonable precision the molecular statistics of catalase action in the peroxisomes. 2. The endogenous hydrogen peroxide generation is adequate to sustain a concentration of the catalase intermediate (p(m)/e) of 60-70% of the hydrogen peroxide saturation value. Total amount of catalase corresponds to 0.12-0.15nmol of haem iron/mg of protein. In State 1 the rate of hydrogen peroxide generation corresponds to 0.9nmol/min per mg of protein or 5% of the mitochondrial respiratory rate in State 4. 3. Partial saturation of the catalase intermediate with hydrogen peroxide (p(m)/e) in the mitochondrial fraction suggests its significant peroxidatic activity towards its endogenous hydrogen donor. A variation of this value (p(m)/e) from 0.3 in State 4 to 0 under anaerobic conditions is observed. 4. For a particular preparation the hydrogen peroxide generation rate in the substrate-supplemented State 4 corresponds to 0.17s(-1) (eqn. 6), the hydrogen peroxide concentration to 2.5nm and the hydrogen-donor concentration (in terms of ethanol) to 0.12mm. The reaction is 70% peroxidatic and 30% catalatic. 5. A co-ordinated production of both oxidizing and reducing substrates for catalase in the mitochondrial fraction is suggested by a 2.2-fold increase of hydrogen peroxide generation and a threefold increase in hydrogen-donor generation in the State 1 to State 4 transition. 6. Additional hydrogen peroxide generation provided by the urate oxidase system of peroxisomes (8-12nmol of uric acid oxidized/min per mg of protein) permits saturation of the catalase with hydrogen peroxide to haem occupancy of 40% compared with values of 36% for a purified rat liver catalase ofk(1)=1.7x10(7)m(-1).s(-1) and k'(4)=2.6x10(7)m(-1). s(-1)(Chance, Greenstein & Roughton, 1952). 7. The turnover of the catalase ethyl hydrogen peroxide intermediate (k'(3)) in the peroxisomes is initially very rapid since endogenous hydrogen peroxide acts as a hydrogen donor. k'(3) decreases fivefold in the uncoupled state of the mitochondria.  相似文献   

17.
The Mo(V) center of plant sulfite oxidase from Arabidopsis thaliana (At-SO) has been studied by continuous wave and pulsed EPR methods. Three different Mo(V) EPR signals have been observed, depending on pH and the technique used to generate the Mo(V) oxidation state. At pH 6, reduction by sulfite followed by partial reoxidation with ferricyanide generates an EPR spectrum with g-values similar to the low-pH (lpH) form of vertebrate SOs, but no nearby exchangeable protons can be detected. On the other hand, reduction of At-SO with Ti(III) citrate at pH 6 generates a Mo(V) signal with large hyperfine splittings from a single exchangeable proton, as is typically observed for lpH SO from vertebrates. Reduction of At-SO with sulfite at high pH generates the well-known high-pH (hpH) signal common to all sulfite oxidizing enzymes. It is proposed that, depending on the conformation of Arg374, the active site of At-SO may be in "closed" or "open" forms that differ in the degree of accessibility of the Mo center to substrate and water molecules. It is suggested that at low pH the sulfite-reduced At-SO has coordinated sulfate and is in the "closed form". Reoxidation to Mo(V) by ferricyanide leaves bound sulfate trapped at the active site, and consequently, there are no ligands with exchangeable protons. Reduction with Ti(III) citrate injects an electron directly into the active site to generate the [Mo(V)[triple bond]O(OH)]2+ unit that is well-known from model chemistry and which has a single exchangeable proton with a large isotropic hyperfine interaction. At high pH, the active site is in the "open form", and water can readily exchange into the site to generate the hpH SO.  相似文献   

18.
The one-electron oxidation of (bi)sulfite is catalyzed by peroxidases to yield the sulfur trioxide radical anion (SO3-), a predominantly sulfur-centered radical as shown by studies with 33S-labeled (bi)sulfite. This radical reacts with molecular oxygen to form a peroxyl radical. The subsequent reaction of this peroxyl radical with (bi)sulfite has been proposed to form the sulfate anion radical, which is nearly as strong an oxidant as the hydroxyl radical. We used the spin trapping electron spin resonance technique to provide for the first time direct evidence for sulfate anion radical formation during (bi)sulfite peroxidation. The sulfate anion radical is known to react with many compounds more commonly thought of as hydroxyl radical scavengers such as formate and ethanol. Free radicals derived from these scavengers are trapped in systems where (bi)sulfite peroxidation has been inhibited by these scavengers.  相似文献   

19.
The enzyme catalysing the reduction of adenosine 5'-phosphosulfate (AdoPS) to sulfite in higher plants, AdoPS reductase, is considered to be the key enzyme of assimilatory sulfate reduction. In order to address its reaction mechanism, the APR2 isoform of this enzyme from Arabidopsis thaliana was overexpressed in Escherichia coli and purified to homogeneity. Incubation of the enzyme with [35S]AdoPS at 4 degrees C resulted in radioactive labelling of the protein. Analysis of APR2 tryptic peptides revealed 35SO2-3 bound to Cys248, the only Cys conserved between AdoPS and prokaryotic phosphoadenosine 5'-phosphosulfate reductases. Consistent with this result, radioactivity could be released from the protein by incubation with thiols, inorganic sulfide and sulfite. The intermediate remained stable, however, after incubation with sulfate, oxidized glutathione or AdoPS. Because truncated APR2, missing the thioredoxin-like C-terminal part, could be labelled even at 37 degrees C, and because this intermediate was more stable than the complete protein, we conclude that the thioredoxin-like domain was required to release the bound SO2-3 from the intermediate. Taken together, these results demonstrate for the first time the binding of 35SO2-3 from [35S]AdoPS to AdoPS reductase and its subsequent release, and thus contribute to our understanding of the molecular mechanism of AdoPS reduction in plants.  相似文献   

20.
The important role of plant peroxisomes in a variety of metabolic reactions such as photorespiration, fatty acid beta-oxidation, the glyoxylate cycle and generation-degradation of hydrogen peroxide is well known. In recent years, the presence of a novel group of enzymes, mainly involved in the metabolism of oxygen free-radicals, has been shown in peroxisomes. In addition to hydrogen peroxide, peroxisomes can generate superoxide-radicals and nitric oxide, which are known cellular messengers with a variety of physiological roles in intra- and inter-cellular communication. Nitric oxide and hydrogen peroxide can permeate the peroxisomal membrane and superoxide radicals can be produced on the cytosolic side of the membrane. The signal molecule-generating capacity of peroxisomes can have important implications for cellular metabolism in plants, particularly under biotic and abiotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号