首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

2.
We show that Ca2+ loading of mitochondria substantially augments the myristate-induced decrease in the transmembrane electric potential difference (deltapsi). Such a Ca2+ action is without effect on the respiration rate and is not accompanied by the high-amplitude swelling when low concentrations of Ca2+ and myristate are used. The myristate-induced deltapsi decrease is prevented and reversed by cyclosporin A (CsA); the decrease is prevented and transiently reversed by nigericin. To explain these effects, we suggest that myristate induces opening of the mitochondrial permeability transition pore at a low-conductance state. Addition of carboxyatractylate (CAtr) after myristate induces the CsA-sensitive uncoupling, but when added after myristate and CsA, CAtr produces a decrease in deltapsi, if the interval between myristate and CsA addition is sufficiently long. The CAtr effect is completely reversed by EGTA and transiently reversed by nigericin. This suggests that the ADP/ATP-antiporter participates in the CsA-sensitive uncoupling when present as a pore complex constituent. ADP/ATP-antiporter that does not take part in the pore complex formation is involved in the CsA-insensitive uncoupling.  相似文献   

3.
The ATP/ADP-antiporter inhibitors and the substrate ADP suppress the uncoupling effect induced by low (10-20 microM) concentrations of palmitate in mitochondria from skeletal muscle and liver. The inhibitors and ADP are found to (a) inhibit the palmitate-stimulated respiration in the controlled state and (b) increase the membrane potential lowered by palmitate. The degree of efficiency decreases in the order: carboxyatractylate (CAtr) greater than ADP greater than bongkrekic acid, atractylate. GDP is ineffective, Mg.ADP is of much smaller effect, whereas ATP is effective at much higher concentration than is ADP. Inhibitor concentrations, which maximally suppress the palmitate-stimulated respiration, correspond to those needed for arresting the state 3 respiration. The extent of the CAtr-sensitive stimulation of respiration by palmitate has been found to decrease with an increase in palmitate concentration. Stimulation of the controlled respiration by p-trifluoromethoxycarbonylcyanide phenylhydrozone (FCCP) and gramicidin D at any concentrations of these uncouplers is CAtr-insensitive, whereas that caused by a low concentrations of 2,4-dinitrophenol and dodecyl sulfate is inhibited by CAtr. The above effect of palmitate develops immediately after addition of the fatty acid. It is resistant to EGTA as well as to inhibitors of phospholipase (nupercain) and of lipid peroxidation (ionol). Moreover, palmitate accelerates spontaneous release of the respiratory control, developing in rat liver mitochondria under certain conditions. This effect takes several minutes, being sensitive to EGTA, nupercain and ionol. Like the fast uncoupling, this slow effect is inhibited by ADP but CAtr and atractylate are stimulatory rather than inhibitory. In artificial planar phospholipid membrane, palmitate does not increase the membrane conductance, FCCP increases it strongly and dinitrophenol only slightly. In cytochrome oxidase proteoliposomes, FCCP, gramicidin and dinitrophenol (less effectively) lower, whereas palmitate enhances the cytochrome-oxidase-generated membrane potential. In this system, monensin substitutes for palmitate. It is concluded that the ATP/ADP antiporter is somehow involved in the uncoupling effect caused by low concentrations of palmitate and, partially, of dinitrophenol, whereas uncoupling produced by FCCP and gramicidin is due to their action on the phospholipid part of the mitochondrial membrane. A possible mechanism of this effect is discussed.  相似文献   

4.
Palmitate-induced uncoupling, which involves ADP/ATP and aspartate/glutamate antiporters, has been studied in liver mitochondria of old rats (22-26 months) under conditions of lipid peroxidation and inhibition of oxidative stress by antioxidants--thiourea, Trolox, and ionol. It has been shown that in liver mitochondria of old rats in the absence of antioxidants and under conditions of overproduction of conjugated dienes, the protonophoric uncoupling activity of palmitate is not suppressed by either carboxyatractylate or aspartate used separately. However, the combination of carboxyatractylate and aspartate decreased uncoupling activity of palmitate by 81%. In this case, palmitate-induced uncoupling is limited by a stage insensitive to both carboxyatractylate and aspartate. In the presence of antioxidants, the palmitate-induced protonophoric uncoupling activity is suppressed by either carboxyatractylate or aspartate used separately. Under these conditions, palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter). In the absence of antioxidants, the uncoupling activity of palmitate is not suppressed by ADP either in the absence or in the presence of aspartate. However, in the presence of thiourea, Trolox, or ionol ADP decreased the uncoupling activity of palmitate by 38%. It is concluded that in liver mitochondria of old rats the development of oxidative stress in the presence of physiological substrates of ADP/ATP and aspartate/glutamate antiporters (ADP and aspartate) results in an increase of the protonophoric uncoupling activity of palmitate.  相似文献   

5.
Carboxyatractylate (CAT) and atractylate inhibit the mitochondrial adenine nucleotide translocator (ANT) and stimulate the opening of permeability transition pore (PTP). Following pretreatment of mouse liver mitochondria with 5 microM CAT and 75 microM Ca2+, the activity of PTP increased, but addition of 2 mM ADP inhibited the swelling of mitochondria. Extramitochondrial Ca2+ concentration measured with Calcium-Green 5N evidenced that 2 mM ADP did not remarkably decrease the free Ca2+ but the release of Ca2+ from loaded mitochondria was stopped effectively after addition of 2 mM ADP. CAT caused a remarkable decrease of the maximum amount of calcium ions, which can be accumulated by mitochondria. Addition of 2 mM ADP after 5 microM CAT did not change the respiration, but increased the mitochondrial capacity for Ca2+ at more than five times. Bongkrekic acid (BA) had a biphasic effect on PT. In the first minutes 5 microM BA increased the stability of mitochondrial membrane followed by a pronounced opening of PTP too. BA abolished the action about of 1 mM ADP, but was not able to induce swelling of mitochondria in the presence of 2 mM ADP. We conclude that the outer side of inner mitochondrial membrane has a low affinity sensor for ADP, modifying the activity of PTP. The pathophysiological importance of this process could be an endogenous prevention of PT at conditions of energetic depression.  相似文献   

6.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides.  相似文献   

7.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides.  相似文献   

8.
The effect of acetoacetate on palmitate-induced uncoupling with the involvement of ADP/ATP antiporter and aspartate/glutamate antiporter has been studied in liver mitochondria. The incubation of mitochondria with acetoacetate during succinate oxidation in the presence of rotenone, oligomycin, and EGTA suppresses the accumulation of conjugated dienes. This is considered as a display of antioxidant effect of acetoacetate. Under these conditions, acetoacetate does not influence the respiration of mitochondria in the absence or presence of palmitate but eliminates the ability of carboxyatractylate or aspartate separately to suppress the uncoupling effect of this fatty acid. The action of acetoacetate is eliminated by β-hydroxybutyrate or thiourea, but not by the antioxidant Trolox. In the absence of acetoacetate, the palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter); in its presence, it is limited by a stage insensitive to the effect of these agents. In the presence of Trolox, ADP suppresses the uncoupling action of palmitate to the same degree as carboxyatractylate. Under these conditions, acetoacetate eliminates the recoupling effects of ADP and aspartate, including their joint action. This effect of acetoacetate is eliminated by β-hydroxybutyrate or thiourea. It is supposed that the stimulating effect of acetoacetate is caused both by increase in the rate of transfer of fatty acid anion from the inner monolayer of the membrane to the outer one, which involves the ADP/ATP antiporter and aspartate/glutamate antiporter, and by elimination of the ability of ADP to inhibit this transport. Under conditions of excessive production of reactive oxygen species in mitochondria at a high membrane potential and in the presence of small amounts of fatty acids, such effect of acetoacetate can be considered as one of the mechanisms of antioxidant protection.  相似文献   

9.
Long-chain saturated α,ω-dioic acids can induce nonspecific permeability of the inner membrane (pore opening) of liver mitochondria loaded with Ca2+ or Sr2+ by the mechanism insensitive to cyclosporin A (CsA). In this work we found that 200 μM Ca2+ and 20 μM α,ω-hexadecanedioic acid (HDA) in the presence of 1 μM CsA induced high-amplitude swelling of liver mitochondria (pore opening) only in the presence of succinate as oxidation substrate. Under these conditions protonophore uncoupler of oxidative phosphorylation 2,4-dinitrophenol at the concentration of 75 μM, which is optimal for its uncoupling activity, inhibited mitochondrial swelling induced by Ca2+ and HDA, despite the presence of succinate in the incubation medium. Natural uncouplers of oxidative phosphorylation, oleic and linoleic acids, produced a similar effect. These data suggest that energization of organelles, which promotes Ca2+ transport into the matrix, is one of the basic requirements of pore opening in liver mitochondria induced by Ca2+ and HDA. It is shown that ATP at the physiological concentration of 2 mM inhibits HDA-induced high-amplitude swelling of mitochondria by reducing free Ca2+ concentration in the medium. ADP at the same concentration had a similar effect. This modulating effect of nucleotides apparently is attributable to their ability to chelate calcium ions. Polycation spermine, which is known as an inhibitor of the classical CsA-sensitive pore, at the physiological concentration of 1 mM inhibited CsA-insensitive swelling of liver mitochondria induced by sequential addition of Ca2+ and HDA. It is assumed that such action of spermine is due to its ability to shield the negative surface charges on the inner membrane of mitochondria. Bovine serum albumin (BSA), which is able to bind free fatty acids and thus prevent the induction of Ca2+-dependent pore, inhibited HDA-induced swelling of mitochondria. However, at the same BSA/fatty acid molar ratio inhibitory effect of BSA was much less pronounced if HDA was used as the pore inducer instead of palmitic acid. Apparently, this can be accounted by the fact that BSA binds α,ω-dioic acids weaker than their monocarboxylic analogues.  相似文献   

10.
Carboxyatractylate inhibits the uncoupling effect of free fatty acids   总被引:2,自引:0,他引:2  
The ATP/ADP-antiporter inhibitors and ADP decrease the palmitate-induced stimulation of the mitochondrial respiration in the controlled state. The degree of inhibition decreases in the order: carboxyatractylate greater than bongkrekic acid, palmitoyl-CoA, ADP greater than atractylate. GDP is ineffective. The inhibiting concentration of carboxyatractylate coincides with this arresting the state 3 respiration. Carboxyatractylate inhibition decreases when the palmitate concentration increases. Stimulation of controlled respiration by FCCP or gramicidin D at any concentration of these uncouplers is carboxyatractylate-resistant, whereas that by low concentrations of DNP is partially suppressed by carboxyatractylate. These data together with observations that palmitate does not increase H+ conductance in bilayer phospholipid membranes and in cytochrome oxidase-asolectin proteoliposomes indicate that the ATP/ADP-antiporter is somehow involved in the uncoupling by low concentrations of fatty acids (or DNP), whereas that by FCCP and gramicidin D is due to their effect on the phospholipid bilayer. It is suggested that the antiporter facilitates translocation of palmitate anion across the mitochondrial membrane.  相似文献   

11.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

12.
The purpose of this work is to measure protonmotive force and cytochrome reduction level under different respiratory steady states in isolated yeast mitochondria. The rate of respiration was varied by using three sets of conditions: (a) different external phosphate concentrations with a fixed concentration of ADP (ATP synthesis) and (b) different concentrations of carbonylcyanide m-chlorophenylhydrazone in the presence of oligomycin and carboxyatractylate (uncoupling) either in the absence or (c) in the presence of external ATP. ADP plus phosphate stimulates respiration more than uncoupler at the same protonmotive force value. However, the relationships between respiratory rate and protonmotive force were similar when stimulation was induced either by ADP + Pi or by carbonylcyanide m-chlorophenylhydrazone in the presence of ATP. At the same respiratory rate, cytochrome a + a3 is more reduced by uncoupler than by ADP + Pi additions. However, the relationships between respiratory rate and reduction level of cytochrome-c oxidase are similar both under ATP synthesis and with uncoupling conditions in the presence of external ATP. Control of respiration exerted by cytochrome-c oxidase, and support the view the condition mentioned above. This control was low when the respiratory rate was varied by the ATP synthesis rate; it increased as a function of the respiratory rate with uncoupler in the absence of ATP. ATP decreased this control under uncoupling conditions. These results suggest a regulatory effect of external ATP on cytochrome-c oxidase, and support the view that the relationships between respiratory rate and protonmotive force, on the one hand, and respiratory rate and the reduction level of cytochrome-c oxidase, on the other, depend respectively on the kinetic regulations of the system.  相似文献   

13.
In liver mitochondria, the phosphate carrier is involved in protonophoric uncoupling effect of fatty acids together with ADP/ATP and aspartate/glutamate antiporters (Samartsev et al. 2003. Biochemistry (Moscow). 68, 618–629). Liver mitochondria depleted of endogenous oxidation substrates (exhausted mitochondria) have been used in the present work. In these mitochondria, like in the intact liver mitochondria, the specific inhibitor of ADP/ATP antiporter (carboxyatractylate) and the substrate of aspartate/glutamate antiporter (aspartate) suppress the uncoupling activity of palmitic acid. It is shown that in exhausted mitochondria the substrate of phosphate carrier (inorganic phosphate) and its nonspecific inhibitor mersalyl partially suppress palmitic acid-induced uncoupling due to decrease in the component of uncoupling activity sensitive to carboxyatractylate and aspartate. In the presence of inorganic phosphate or mersalyl, carboxyatractylate and aspartate added separately subsequent to palmitic acid do not suppress its uncoupling activity. They are effective only when added jointly. In the presence of thiourea or pyruvate, such effects of inorganic phosphate and mersalyl are not observed. It is supposed that in the presence of inorganic phosphate or mersalyl and under the condition of oxidation of critical SH-groups in mitochondria, the phosphate carrier, ADP/ATP antiporter, and aspartate/glutamate antiporter are involved in uncoupling function together with the general fatty acid pool as an uncoupling complex. The role of phosphate carrier in this complex may consist in facilitation of lateral transfer of the fatty acid molecules from one antiporter to another.  相似文献   

14.
It was found that α,ω-tetradecanedioic acid (TDA) at the concentration of 0–500 μM doubles the rate of nonphosphorylating respiration (free oxidation) of liver mitochondria in a dose-dependent manner. This effect of TDA is observed in the presence of the excess of EGTA, which eliminates the induction of the Ca2+-dependent nonspecific permeability of the mitochondrial inner membrane (pore opening). An unusually high concentration of cyclosporin A (10 mM) completely eliminates this effect when added to the mitochondria before or after TDA. The stimulatory effect of TDA is not accompanied by inhibition of oxidative ATP synthesis and decrease in the ADP/O ratio, in contrast to the effects of other activators of free oxidation, such as protonophore uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone and palmitic acid. It was shown that neither oligomycin, an inhibitor of H+-ATP synthase, nor ADP, ATP and Pi affected the activity of TDA. This is seen as an evidence that the effect of TDA is not associated with the influence on H+-ATP synthase and it differs from the action of membranotropic uncouplers. In the presence of the lipophilic cation tetraphenylphosphonium (TPP+) cyclosporin A does not affect the TDA-stimulated respiration of mitochondria, but carboxyatractylate and glutamate added after TDA do inhibit the respiration. In addition, under these conditions TDA decreases the rate of oxidative ATP synthesis and reduces the ADP/O ratio. It is assumed that the mechanism of the TDA-induced activation of free oxidation in liver mitochondria in the absence of TPP+ is similar to that of the so-called decouplers and is associated with the switching of the respiratory chain complexes to the idle mode (inner uncoupling).  相似文献   

15.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

16.
Membrane-bound proteinase activity was demonstrated by a solid-phase assay system in both beef heart and rat liver mitochondria. The activity was sensitive to SH reagents and assorted proteinase inhibitors. Although stimulated by nonionic detergents, it became labile when solubilized by detergents. The proteinase activity from heart mitochondria copurified with the ADP:ATP translocator protein. Gel electrophoresis of this preparation revealed the translocator polypeptide as well as a number of minor components. In solubilized mitochondria the ADP:ATP translocator polypeptide slowly disappeared upon standing at 0°C as revealed by polyacrylamide gel electrophoresis under denaturing conditions. The loss of this polypeptide was prevented by addition of proteinase inhibitors as well as the translocator affinity ligand, carboxyatractylate. These observations confirm the presence of an integral membrane proteinase in mitochondria and suggest a structural and enzymatic interaction between the proteinase and the ADP:ATP translocator.Abbreviations PMSF phenylmethanesulfonyl fluoride - TPCK l-1-tosylamido-2-phenylethylchloromethyl ketone - TLCK 1-chloro-3-tosylamido-7-amino-l-2-heptanone - NEM N-ethylmaleimide - PCMBS p-chloromercuriphenylsulfonic acid - SDS sodium dodecyl sulfate - MOPS morpholinopropane sulfonate - [I50] concentration of inhibitor required to give 50% inhibition  相似文献   

17.
Mitochondrial permeability transition, due to opening of the permeability transition pore (PTP), is triggered by Ca2+ in conjunction with an inducing agent such as phosphate. However, incubation of rat liver mitochondria in the presence of low micromolar concentrations of Ca2+ and millimolar concentrations of phosphate is known to also cause net efflux of matrix adenine nucleotides via the ATP-Mg/Pi carrier. This raises the possibility that adenine nucleotide depletion through this mechanism contributes to mitochondrial permeability transition. Results of this study show that phosphate-induced opening of the mitochondrial PTP is, at least in part, secondary to depletion of the intramitochondrial adenine nucleotide content via the ATP-Mg/Pi carrier. Delaying net adenine nucleotide efflux from mitochondria also delays the onset of phosphate-induced PTP opening. Moreover, mitochondria that are depleted of matrix adenine nucleotides via the ATP-Mg/Pi carrier show highly increased susceptibility to swelling induced by high Ca2+ concentration, atractyloside, and the prooxidant tert-butylhydroperoxide. Thus the ATPMg/Pi carrier, by regulating the matrix adenine nucleotide content, can modulate the sensitivity of rat liver mitochondria to undergo permeability transition. This has important implications for hepatocytes under cellular conditions in which the intramitochondrial adenine nucleotide pool size is depleted, such as in hypoxia or ischemia, or during reperfusion when the mitochondria are exposed to increased oxidative stress.  相似文献   

18.
Mitochondria of the yeast Endomyces magnusii were examined for the presence of a Ca2+- and phosphate-induced permeability of the inner mitochondrial membrane (pore). For this purpose, coupled mitochondria were incubated under conditions known to induce the permeability transition pore in animal mitochondria, i.e., in the presence of high concentrations of Ca2+ and P(i), prooxidants (t-butylhydroperoxide), oxaloacetate, atractyloside (an inhibitor of ADP/ATP translocator), SH-reagents, by depletion of adenine nucleotide pools, and deenergization of the mitochondria. Large amplitude swelling, collapse of the membrane potential, and efflux of the accumulated Ca2+ were used as parameters for demonstrating pore induction. E. magnusii mitochondria were highly resistant to the above-mentioned substances. Deenergization of mitochondria or depletion of adenine nucleotide pools have no effect on low-amplitude swelling or the other parameters. Cyclosporin A, a specific inhibitor of the nonspecific permeability transition in animal mitochondria, did not affect the parameters measured. It is thus evident that E. magnusii mitochondria lack a functional Ca2+-dependent pore, or possess a pore differently regulated as compared to that of mammalian mitochondria.  相似文献   

19.
Heart mitochondria respiring in a sucrose medium containing P(i) show a permeability transition when challenged with Ca2+ and an oxidant such as cumene hydroperoxide. The transition results from the opening of a Ca(2+)-dependent pore and is evidenced by loss of membrane potential (delta psi) and osmotic swelling due to uptake of sucrose and other solutes. In the absence of oxidant, high concentrations of Ca2+ (100-150 microM) are necessary to induce loss of delta psi and initiate swelling. Cyclosporin A delays the loss of delta psi but enhances swelling under these conditions, apparently by promoting better retention of accumulated Ca2+. Cyclosporin A and ADP together restore delta psi in respiring mitochondria that have undergone the permeability transition at levels that are not effective when either is added alone. When the state of the Ca(2+)-dependent pore is assessed using passive osmotic contraction in response to polyethylene glycol (Haworth, R. A., and Hunter, D. R. (1979) Arch. Biochem. Biophys. 195, 460-467), cyclosporin A is found to be a partial inhibitor of solute flow through the open pore. Cyclosporin A decreases the Vmax of passive contraction and increases the Km for Ca2+ without affecting the Hill slope. ADP in the presence of carboxyatractyloside closes the pore almost completely even in the presence of 40 microM Ca2+. ADP shows mixed type inhibition of the Ca(2+)-dependent pore, and cyclosporin A increases the affinity of the pore for ADP. It is concluded that cyclosporin A and ADP act synergistically to close the Ca(2+)-dependent pore of the mitochondrion and that the pore is probably not formed directly from the adenine nucleotide transporter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号