首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain 3 (D3) of human kininogens, the major cysteine proteinase inhibitors in plasma, has been shown to be the tightest binding inhibitory domain for cathepsins B and H. D3 was expressed in three fragments as its exon products as follows: exon 7 (Gly235-Gln292), exon 8 (Gln292-Gly328), and exon 9 (Gln329-Met357). Exon products 7, 8, and 9 alone as well as exon product 7 + 9 each exhibited an IC50 value 5- to 30-fold higher (5–30M) than exon products 7 + 8 and 8 + 9 (0.9–1.3M) for cathepsins B and H, respectively. However, in turn, the exon products 7 + 8 and 8 + 9 seemed to be less potent inhibitors than the intact D3 (10, 200 nM) or HK (200, 500 nM) molecule. These results clearly indicate that an intact molecule of HK or its domain 3 as a whole is required for optimal inhibition of cathepsins B and H.  相似文献   

2.
Recombinant human cysteine protease inhibitor, stefin A, was expressed in both Escherichia coli and BS-C-1 monkey kidney cells utilizing pET and recombinant vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and Western blot analysis utilizing a polyclonal antibody against rat cystatin alpha. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A ( approximately 10kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BS-C-1 cells, was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells, on the other hand, can provide a significant research tool to study the functional roles of stefin A in mammalian systems such as regulation of cysteine proteases.  相似文献   

3.
Two kininogens are found in mammalian sera: HK (high molecular weight kininogen) and LK (low molecular weight kininogen) with the exception of the rat which encompasses a third kininogen, T-Kininogen (TK). Kininogens are multifunctional glycosylated molecules related to cystatins (clan IH, family I25). They harbor three cystatin domains but only two of them are tight-binding inhibitors of cysteine cathepsins. HK and LK, but not TK, are precursors of potent peptide hormones, the kinins, which are released proteolytically by tissue and plasma kallikreins. Besides these classical features novel functions of kininogens have been recently discovered; they are described in the second part of this review. HKa, which corresponds to the kinin-free two-chain HK and its isolated domain D5 (kininostatin), possesses angiostatic and pro-apoptotic properties, inhibits the proliferation of endothelial cells and participates in the regulation of angiogenesis. Moreover, some HK-derived peptides display potent and broad-spectrum microbicidal properties against both Gram-positive and Gram-negative bacteria, and thus may offer a promising alternative to conventional antibiotic therapy. Of seminal interest, a kininogen-derived peptide inhibits activation of the contact phase system of coagulation and protects mice with invasive Streptococcus pyogenes infection from pulmonary lesions. On the other hand, TK is a biomarker of aging at the end of lifespan of elderly rats. However, although TK has been initially identified as an acute phase reactant, and earlier known as alpha-l-acute phase globulin, the increase of TK in liver and plasma is not known to relate to any inflammatory event during the senescence process.  相似文献   

4.
Cathespin L (EC 3.4.22.15) and cathepsin H (EC 3.4.22.16) have been purified from brain cortex to apparent homogeneity by a simultaneous procedure involving acid extraction of homogenate at pH 4.2, ammonium sulfate fractionation (30–80%), chromatography on pepstatin-Sepharose, CM-Sephadex C-50, DEAE-Sephadex A-50, phenyl- and concanavalin A-Sepharose and isoelectric focusing. Cathepsin L and cathepsin H were assayed in the presence of dithiothreitol and Na2EDTA (2 mM each) with Z-Phe-Arg-NHMec (pH 5.5) and Lys-NNa (pH 6.5) respectively. Cathepsin L consists of 2 polypeptide chains with Mr 25 000 and 5 000, Mr of cathepsin H is 28 000. Cathepsin L exists in brain tissue in two multiple forms with pI values 5.7 and 5.9, pI of cathepsin H is 6.8. Substrate specificity of these thiol proteinases was tested with proteins (pyridoxyl-hemoglobin, azocasein) and low Mr naphthylamide and methylcoumarylamide substrates: Lys-NNa, Arg-NNa, Dz-Arg-NNa, Z-Arg-Arg-NNaOMe, Z-Phe-Arg-NHMec, Z-Phe, Val-Arg-NHMec, Z-Gly-Gly-Arg-NHMec. Z-Phe-Arg-NHMec is the best substrate for cathepsin L (KM=5 M, Kcat=21 s–1), Arg-NNa—for cathepsin H (KM=0.1 mM, Kcat=1.93 s–1), being endoaminopeptidase cathepsin H also hydrolyses Bz-Arg-NNa (KM=0.7 mM, Kcat=1.3 s–1). Both proteinases are inhibited by traditional inhibitors of cysteine proteinases and E-64, but leupeptin turned to be more effective inhibitor of cathepsin L (Ki=2.4 nM) than of cathepsin H (Ki=9.2 M), the latter enzyme being sensitive to puromycin and benzethonium chloride as well. Z-Phe-Phe-CHN2 and Z-Phe-Ala-CHN2 are potent irreversible inhibitors of brain cathepsin L with K2nd 150 000 and 137 000 M–1 s–1 respectively. Properties of the enzymes from human and bovine brain are similar.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

5.
Kinins are pro-inflammatory peptides, which participate in the maintenance of cardiovascular homeostasis, and play a key role in numerous diseases, including lung fibrosis and hypertension. Evidence has been provided recently for the presence of alternative mechanisms of bradykinin generation and/or degradation. Here we showed that cathepsin K may act as a potent kinin-degrading enzyme in bloodstream. Contrary to cathepsin L, cathepsin K attenuates kallikrein-induced decrease of rat blood pressure, and reduces the hypotensive effect of bradykinin in a dose-dependent manner. Moreover, we identified, by engineering the S2 subsite of both recombinant enzymes, two critical residues involved respectively in the kininase activity of cathepsin K, i.e. Tyr67/Leu205, versus kininogenase activity of cathepsin L, i.e. Leu67/Ala205. In conclusion, according to its ability to modulate hypotensive effects of kinins, we propose that cathepsin K is a kininase of biological relevance, in complement of well-documented neutral endopeptidase or angiotensin-converting enzyme.  相似文献   

6.
Cathepsin P is a recently discovered placental cysteine protease that is structurally related to the more ubiquitously expressed, broad-specificity enzyme, cathepsin L. We studied the substrate specificity requirements of recombinant mouse cathepsin P using fluorescence resonance energy transfer (FRET) peptides derived from the lead sequence Abz-KLRSSKQ-EDDnp (Abz, ortho-aminobenzoic acid and EDDnp, N-[2,4-dinitrophenyl]ethylenediamine). Systematic modifications were introduced resulting in five series of peptides to map the S(3) to S(2)(') subsites of the enzyme. The results indicate that the subsites S(1), S(2), S(1)('), and S(2)('), present a clear preference for hydrophobic residues. The specificity requirements of the S(2) subsite were found to be more restricted, preferring hydrophobic aliphatic amino acids. The S(3) subsite of the enzyme presents a broad specificity, accepting negatively charged (Glu), positively charged (Lys, Arg), and hydrophobic aliphatic or aromatic residues (Val, Phe). For several substrates, the activity of cathepsin P was markedly regulated by kosmotropic salts, particularly Na(2)SO(4). No significant effect on secondary or tertiary structure could be detected by either circular dichroism or size exclusion chromatography, indicating that the salts most probably disrupt unfavorable ionic interactions between the substrate and enzyme active site. A substrate based upon the preferred P(3) to P(2)(') defined by the screening study, ortho-aminobenzoic-Glu-Ile-Phe-Val-Phe-Lys-Gln-N-(2,4-dinitrophenyl)ethylenediamine (cleaved at the Phe-Val bond) was efficiently hydrolyzed in the absence of high salt. The k(cat)/K(m) for this substrate was almost two orders of magnitude higher than that of the original parent compound. These results show that cathepsin P, in contrast to other mammalian cathepsins, has a restricted catalytic specificity.  相似文献   

7.
Cathepsin K, the most potent mammalian collagenase, has been implicated in osteoporosis, cancer metastasis, atherosclerosis, and arthritis. Although procathepsin K is stable and readily detected, the active mature cathepsin K eludes detection by in vitro methods due to its shorter half-life and inactivation at neutral pH. We describe, for the first time, reliable detection, visualization, and quantification of mature cathepsin K to femtomole resolution using gelatin zymography. The specificity of the method was validated with cathepsin K knockdown using small interfering RNA (siRNA) transfection of human monocyte-derived macrophages, and enzymatic activity confirmed with benzyloxycarbonyl-glycine-proline-arginine-7-amino-4-methylcoumarin (Z-GPR-AMC) substrate hydrolysis was fit to a computational model of enzyme kinetics. Furthermore, cathepsin K zymography was used to show that murine osteoclasts secrete more cathepsin K than is stored intracellularly, and this was opposite to the behavior of the macrophages from which they were differentiated. In summary, this inexpensive, species-independent, antibody-free protocol describes a sensitive method with broad potential to elucidate previously undetectable cathepsin K activity.  相似文献   

8.
Cathepsin K is a member of the papain superfamily of cysteine proteases and plays a pivotal role in osteoclast-mediated bone resorption. This enzyme is an excellent target for antiresorptive therapies for osteopenic disorders such as osteoporosis.(1) Although isolated inhibitor studies on purified enzymes is required to discover potent and selective inhibitors of cathepsin K, a quantitative cytochemical assay(2) for cathepsin K would allow inhibitors to be tested on actual osteoclasts within sections of bone. Furthermore cathepsin K activity could be used to identify and analyse osteoclasts at definitive stages of their lifespan. A cytochemical assay is described that localizes osteoclast cathepsin K activity in unfixed, undecalcified cryostat sections of animal and human bone.  相似文献   

9.
A papain inhibitor or 22 kDa was isolated from human placenta and shown to be identical to residues Cys246-Leu373 of the third domain of human kininogen. This kininogen domain and recombinant human cystatin C were inactivated by peptide bond cleavages at hydrophobic amino acid residues due to the action of cathepsin D. These results further support the proposed role cathepsin D in the regulation of cysteine proteinase activity.  相似文献   

10.
Cathepsins V and L have high identity and few structural differences. In this paper, we reported a comparative study of the hydrolytic activities of recombinant human cathepsins V and L using fluorescence resonance energy transfer peptides derived from Abz-KLRSSKQ-EDDnp (Abz = ortho-aminobenzoic acid and EDDnp = N-(2,4-dinitrophenyl)ethylenediamine). Five series of peptides were synthesized to map the S3 to S2' subsites. The cathepsin V subsites S1 and S3 present a broad specificity while cathepsin L has preference for positively charged residues. The S2 subsites of both enzymes require hydrophobic residues with preference for Phe and Leu. The S1' and S2' subsites of cathepsins V and L are less specific. Based on these data we designed substrates to explore the electrostatic potential differences of them. Finally, the kininogenase activities of these cathepsins were compared using synthetic human kininogen fragments. Cathepsin V preferentially released Lys-bradykinin while cathepsin L released bradykinin. This kininogenase activity by cathepsins V and L was also observed from human high and low molecular weight kininogens.  相似文献   

11.
The exchange of residues 67 and 205 of the S2 pocket of human cysteine cathepsins K and L induces a permutation of their substrate specificity toward fluorogenic peptide substrates. While the cathepsin L-like cathepsin K (Tyr67Leu/Leu205Ala) mutant has a marked preference for Phe, the Leu67Tyr/Ala205Leu cathepsin L variant shows an effective cathepsin K-like preference for Leu and Pro. A similar turnaround of inhibition was observed by using specific inhibitors of cathepsin K [1-(N-Benzyloxycarbonyl-leucyl)-5-(N-Boc-phenylalanyl-leucyl)carbohydrazide] and cathepsin L [N-(4-biphenylacetyl)-S-methylcysteine-(D)-Arg-Phe-beta-phenethylamide]. Molecular modeling studies indicated that mutations alter the character of both S2 and S3 subsites, while docking calculations were consistent with kinetics data. The cathepsin K-like cathepsin L was unable to mimic the collagen-degrading activity of cathepsin K against collagens I and II, DQ-collagens I and IV, and elastin-Congo Red. In summary, double mutations of the S2 pocket of cathepsins K (Y67L/L205A) and L (L67Y/A205L) induce a switch of their enzymatic specificity toward small selective inhibitors and peptidyl substrates, confirming the key role of residues 67 and 205. However, mutations in the S2 subsite pocket of cathepsin L alone without engineering of binding sites to chondroitin sulfate are not sufficient to generate a cathepsin K-like collagenase, emphasizing the pivotal role of the complex formation between glycosaminoglycans and cathepsin K for its unique collagenolytic activity.  相似文献   

12.
Gold(III) compounds have been examined for potential anti-cancer activity. It is proposed that the molecular targets of these compounds are thiol-containing biological molecules such as the cathepsin cysteine proteases. These enzymes have been implicated in many diseases including cancer. The catalytic mechanism of the cathepsin cysteine proteases is dependent upon a cysteine at the active site which is accessible to the interaction of thiophilic metals such as gold. The synthesis and biological activity of square-planar six-membered cycloaurated Au(III) compounds with a pyridinyl-phenyl linked backbone and two monodentate or one bidentate leaving group is described. Gold(III) cycloaurated compounds were able to inhibit both cathepsins B and K. Structure/activity was investigated by modifications to the pyridinyl-phenyl backbone, and leaving groups. Optimal activity was seen with substitution at the 6 position of the pyridine ring. The reversibility of inhibition was tested by reactivation in the presence of cysteine with a bidentate thiosalicylate compound being an irreversible inhibitor. Five compounds were evaluated for in vitro cytotoxicity against a panel of human tumor cell lines. The thiosalicylate compound was tested in vivo against the HT29 human colon tumor xenograft model. A modest decrease in tumor growth was observed compared with the untreated control tumor.  相似文献   

13.
A previously described “major acidic proteinase” of adult Schistosoma mansoni, believed to play a key role in the parasite's metabolism, has been identified as a cathepsin B (Sm31). Purified Sm cathepsin B was not recognized by anti-Sm32 or anticathepsin L antibodies. The enzyme hydrolyzes the synthetic protease substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC as well as protein substrates. Its pH optimum is 3.0 with serum albumin, 4.0–5.0 with globin and 5.5–6.0 with the synthetic substrates. The enzyme was inactivated by cysteine proteinase inhibitors. Its activity against protein substrates would support the hypothesis that it plays a role in schistosome nutrition.  相似文献   

14.
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

15.
Evolution of proteins of the cystatin superfamily   总被引:8,自引:0,他引:8  
Summary We have examined the amino acid sequences of a number of proteins that have been suggested to be related to chicken cystatin, a protein from chicken egg white that inhibits cysteine proteinases. On the basis of statistical analysis, the following proteins were found to be members of the cystatin superfamily: human cystatin A, rat cystatin A(), human cystatin B, rat cystatin B(), rice cystatin, human cystatin C, ox colostrum cystatin, human cystatin S, human cystatin SA, human cystatin SN, chicken cystatin, puff adder cystatin, human kininogen, ox kininogen, rat kininogen, rat T-kininogens 1 and 2, human 2HS-glycoprotein, and human histidine-rich glycoprotein. Fibronectin is shown not to be a member of this superfamily, and the c-Ha-ras oncogene protein p21(Val-12) probably is not a member also. It was convenient to divide members of the superfamily into four types on the basis of the presence of one, two, or three copies of cystatin-like segments and the presence or absence of disulfide bonds. Evolutionary dendrograms were calculated by three methods, and from these we have constructed a scheme depicting the sequence of events in the evolution of these proteins. We suggest that about 1000 million years ago a precursor containing disulfide loops appeared, and that all disulfide-containing cystatins are derived from this. We follow the evolution of the proteins of the superfamily along four main lineages, with special attention to the part that duplication of segments has played in the development of the more complex molecules.  相似文献   

16.
Dipetidyl peptidase 9 (DPP9) is a prolyl dipeptidase preferentially cleaving the peptide bond after the penultimate proline residue. The biological function of DPP9 is unknown. In this study, we have significantly improved the yield using Strep·Tactin® purification system and characterized the biochemical property of DPP9. Moreover, the dimer interaction mode was investigated by introducing a mutation (F842A) at the dimer interface, which abolished the enzymatic activity without disrupting its quaternary structure. Furthermore, DPP9 was found ubiquitously expressed in fibroblasts, epithelial, and blood cells. Surprisingly, contrary to previous report, we found that the expression levels of DPP8 and DPP9 did not change upon the activation of the PBMC or Jurkat cells. These results indicate that the biochemical property of DPP9 is very similar to that of DPP8, its homologous protease. DPP9 and DPP8 are likely redundant proteins carrying out overlapping functions in vivo.  相似文献   

17.
Near-infrared fluorophore (NIRF)-labeled imaging probes are becoming increasingly important in bio-molecular imaging applications, that is, in animal models for tumor imaging or inflammation studies. In this study we showed that the previously introduced chemical concept of ‘Reverse Design’ represents an efficient strategy for the generation of selective probes for cysteine proteases from chemically optimized protease inhibitors for investigations in proteomic lysates as well as for in vivo molecular imaging studies. The newly developed activity-based probe AW-091 was demonstrated to be highly selective for cathepsin S in vitro and proved useful in monitoring cysteine cathepsin activity in vivo, that is, in zymosan-induced mouse model of inflammation. AW-091 showed higher signal-to-background ratios at earlier time points than the commercially available polymer-based ProSense680 (VisEn Medical) and thus represents an efficient new tool for studying early proteolytic processes leading to various diseases, including inflammation, cancer, and rheumatoid arthritis. In addition, the fluorescent signal originating from the cleaved AW-091 was shown to be reduced by the administration of an anti-inflammatory drug, dexamethasone and by the cathepsin inhibitor E-64, providing a valuable system for the evaluation of small-molecule inhibitors of cathepsins.  相似文献   

18.
19.
Proteolytic activity is required for several key processes in cancer development and progression, including tumor growth, invasion and metastasis. Accordingly, high levels of protease expression and activity have been found to correlate with malignant progression and poor patient prognosis in a wide variety of human cancers. Members of the papain family of cysteine cathepsins are among the protease classes that have been functionally implicated in cancer. Therefore, the discovery of effective cathepsin inhibitors has considerable potential for anti-cancer therapy. In this study we describe the identification of a novel, reversible cathepsin inhibitor, VBY-825, which has high potency against cathepsins B, L, S and V. VBY-825 was tested in a pre-clinical model of pancreatic islet cancer and found to significantly decrease tumor burden and tumor number. Thus, the identification of VBY-825 as a new and effective anti-tumor drug encourages the therapeutic application of cathepsin inhibitors in cancer.  相似文献   

20.
A Manduca sexta (tobacco hornworm) cysteine protease inhibitor, MsCPI, purified from larval hemolymph has an apparent molecular mass of 11.5 kDa, whereas the size of the mRNA is very large (9 kilobases). MsCPI cDNA consists of a 9,273 nucleotides that encode a polypeptide of 2,676 amino acids, which includes nine tandemly repeated MsCPI domains, four cystatin-like domains and one procathepsin F-like domain. The procathepsin F-like domain protein was expressed in Escherichia coli and processed to its active mature form by incubation with pepsin. The mature enzyme hydrolyzed Z-Leu–Arg–MCA, Z-Phe–Arg–MCA and Boc–Val–Leu–Lys–MCA rapidly, whereas hydrolysis of Suc–Leu–Tyr–MCA and Z-Arg–Arg–MCA was very slow. The protease was strongly inhibited by MsCPI, egg-white cystatin and sunflower cystatin with Ki values in the nanomolar range. When the MsCPI tandem protein linked to two MsCPI domains was treated with proteases, it was degraded by the cathepsin F-like protease. However, tryptic digestion converted the MsCPI tandem protein to an active inhibitory form. These data support the hypothesis that the mature MsCPI protein is produced from the MsCPI precursor protein by trypsin-like proteases. The resulting mature MsCPI protein probably plays a role in the regulation of the activity of endogenous cysteine proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号