首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The previously used supersaturated 60% isopropanol method (Lillie 1954, p. 303) protected the more readily soluble lipids from the solvent action of 70% alcohol but precipitation of dye particles within and around sections is sometimes a disturbing complication (cf. Vlachos 1959). The propylene glycol method of Chiffelle and Putt (Lillie, p. 304) has been found to remove much of the birefringent lipid from the sections. Glacial acetic acid dissolves most tissue lipids except those of the solvent-resistant ceroid or lipofuscin type. While solutions in 60–70% acetic acid conserve ordinary fats well (Sills and Marsh 1959) their effect on the more easily soluble lipids should be further explored.  相似文献   

2.
An effective cytochemical technique for the simultaneous demonstration of lipids, polysaccharides and protein bodies in the same section from the tissue embedded in Epon 812 is described. Thick sections of peanut cotyledon are used for a typical sample according to the following procelures. Firstly, PAS reaction: (1) Oxidize sections in 0.5% periodic acid in 0.3% nitric acid for 10 min, (2) Wash in running water for 1–2 min and then pass through distilled water, (3) Stain in Schiff's reagent for 30 min, (4) Wash in sodium metabisulfite 3 times, 2 min for each time, (5) Wash in running water for 5 min and then pass through distilled water. Secondly, Sudan black B staining: (1) Rinse section in 70% ethanol for 1-2 min, (2) Stain in fresh 1% Sudan black B in 70% ethanol for 30–60 min at 40–60℃, (3)Rinse in 70% ethanol for 1 min and then in distilled water. Thirdly, Coomassie brilliant blue R staining: (1) Rinse sections in 7% acetic acid for 1–2 min, (2) Stain in I% Coomassie brilliant blue R in 7% acetic acid for 20 min at 60℃, (3) Differentiate in 0.1% acetic acid for I min, (4) Rinse in lunning water for 5 min and then pass through distilled water, (5) Dry at room temperature or in oven, 40℃. The dry sections mount in glycerin-gelatin. After the above three step staining, the three main compounds of the cell can be stained simultaneously. Starch grains and cellulose cell wall take cherry red colour, lipids appear in black, protein bodies are blue. The sealed slides can be kept permanently.  相似文献   

3.
Band-3 protein from human erythrocyte membranes was isolated, without using detergents, by a two-step procedure: (1) The peripheral proteins were removed from the membrane by treatment with 10% acetic acid. (2) The remaining lipoprotein complex was solubilized in approximately 92% (v/v) acetic acid and then separated into its components by preparative zonal electrophoresis in a gradient made up of acetic acid, water and sucrose. Band 3 was recovered from the gradient at a yield of 60 - 70% and purity of about 95%. Approximately 25 mg of band 3 could be prepared in one run. The protein is soluble in aqueous solutions, even in the absence of organic solvents or detergents. In addition to band 3, the proteins stained by periodic acid/Schiff's reagent (the sialoglycoproteins) are also separated from the other proteins.  相似文献   

4.
The technic recommended is: Fix 6-12 hr. in 10% formalin containing 1% CaCl2. Cut frozen sections without embedding or after gelatin or carbowax. Stain 90 min. at 60°C. in saturated aqueous Nile blue sulfate, 500 ml. plus 50 ml. of 0.5% H2SO4, boiled 2 hr. before use. Rinse in distilled water, and place in acetone heated to 50°C. Remove the acetone from the source of heat and allow the sections to remain 30 min. Differentiate in 5% acetic acid 30 min., rinse in distilled water, and refine the differentiation in 0.5% HCl for 3 min. Wash in several changes of distilled water and mount in glycerol jelly. Results: phospholipids - blue; everything else - unstained. Counterstaining nuclei with safranin is optional, but if done, it preferably precedes the Nile blue and is then differentiated by the acetic acid. The histochemical principles on which the method is based are as follows: (1) The calcium compounds of phospholipids combine with the oxazine form of Nile blue sulfate and survive subsequent treatment; (2) neutral lipids are dissolved out by acetone; (3) proteins and other interfering substances are destained by the acetic acid and hydrochloric acid baths.  相似文献   

5.
The objective of this work was to characterize lipid metabolism in long-term cultures of adult rat hepatocytes from female rats and explore the potential use of this culture system to study the effect of hormones, drugs and toxic chemicals on it. Hepatocytes, seeded on a feeder layer of 3T3 cells, maintained for 2 weeks their typical morphology. The cultures were able to take up [14C]acetic and [14C]oleic acid from the culture medium and incorporate them into lipids. The synthesis and secretion of lipids by [14C]acetic acid-labeled cultures had a maximum value after 11 and 13 days in culture. Triacylglycerols were the main lipidic species synthesized and secreted by hepatocytes (up to 67% of the total lipids); they also synthesized and secreted phospholipids, cholesterol and cholesterol esters from [14C]acetic acid. Similarly, [14C]oleic acid-labeled cultures synthesized and secreted mostly triacylglycerols (up to 60-70% of the total lipids), but they were also able to incorporate the labeled precursor into both cellular and secreted phospholipids and cholesterol esters. The activity of glycerol-phosphate-dehydrogenase, marker enzyme of glycerolipid synthesis, decreased slightly during the culture time whereas the activity of malic enzyme, marker of fatty acid synthesis, increased. Our results show that long-term cultures of female rat hepatocytes are able to synthesize and secrete several lipids, specially triacylglycerols, from both [14C]acetic and [14C]oleic acid for at least 2 weeks and that they maintain enzyme activities related with the synthetic pathways of glycerolipids and fatty acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Tetrahydrofuran, an efficient total lipid solvent, was found to precipitate chloroform-methanol soluble proteins from CM (chloroform-methanol, 2:1) lipid extracts of bovine and rat white and grey matter. To total lipid extracts containing proteolipid proteins 4 volumes of tetrahydrofuran are added; the precipitate is centrifuged and washed once with the same solvent. The product contains all the protein and about 1 to 2% of the lipids of the original lipid extract. It is insoluble in CM; solubility in CM is restored by addition of acetic acid or of the lipids recovered from the tetrahydrofuran-soluble fraction It is also soluble in glacial acetic acid and this solution can be diluted either with CM or with distilled water.  相似文献   

7.
A novel method was developed and assessed to extend the lifetime of extraction columns of high-throughput liquid chromatography (HTLC) for bioanalysis of human plasma samples. In this method, a 15% acetic acid solution and 90% THF were respectively used as mobile phases to clean up the proteins in human plasma samples and residual lipids from the extraction and analytical columns. The 15% acetic acid solution weakens the interactions between proteins and the stationary phase of the extraction column and increases the protein solubility in the mobile phase. The 90% THF mobile phase prevents the accumulation of lipids and thus reduces the potential damage on the columns. Using this novel method, the extraction column lifetime has been extended to about 2000 direct plasma injections, and this is the first time that high concentration acetic acid and THF are used in HTLC for on-line cleanup and extraction column lifetime extension.  相似文献   

8.
Orcein, 0.5% in 50% isopropanol, 0.5-1 hr, followed by saturated oil red O in isopropanol diluted 3:2 with distilled water, 10-15 min, was used to demonstrate lipids and elastic tissue simultaneously in 10 μ frozen sections of formalin-fixed aortas of the wild African buffalo, showing atherosclerotic lesions. A comparison was made with the oil red O-aldehyde fuchsin (AF) method of Kwaan and Hopkins (Stain Techn., 39: 123-5, 1964) and the resorcin fuchsin (RF)-oil red O method of Lillie (Histopathologic Technic and Practical Histochemistry, McGraw-Hill, 1954), but both gave marked background staining by AF or RF that obscured the smaller deposits of lipid. Sudan IV could be substituted for oil red but did not demonstrate many of the finest deposits of lipids. Sudan black, in combination with orcein, AF or RF, was very satisfactory for demonstrating lipids but obscured many elastic fibres. Sudan dyes I, II, III, brown, blue, and green, with orcein, AF or RF, showed less contrast between lipids and elastic tissue or failed to stain the lipids adequately.  相似文献   

9.
Summary The histochemical value of fractionated histochromatographic examination of lipids according to Holczabek's (1969) method which gives very good results as regards chromatography, is limited by that phospholipids are not retained quantitatively in sites of their original localization in sections during the first developing in a mixture of petrolether:ether:acetic acid. The staining of phospholipids performed after the first developing therefore does not reveal the localization pattern of all phospholipids.  相似文献   

10.
Cladosporium (Amorphotheca) resinae was grown in shake culture on glucose, n-dodecane, or n-hexadecane. Growth was most rapid on glucose, and more acid accumulated in the medium than in n-alkane-grown cultures. Neutral lipid was the major lipid fraction and triglycerides were the only extracellular neutral lipids detected. Dodecanoic (lauir) acid was the predominant fatty acid (greater than 60%) in neutral lipids from all three media, with lesser amounts of tetradecanoic, hexadecanoic, and octadecanoic acids. Extracellular phospholipids identified were phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and cardiolipin or a cardiolipin-like compound. Phospholipids from all three media contained dodecanoic acid as their principle fatty acid. Dodecanoic acid was the only extracellular free fatty acid detected. Glucose medium contained acetic, glyoxylic, and glycolic acids and an unidentified organic acid which may contribute to the lower pH in cultures after growth on glucose. In all classes of extracellular lipids the fatty acids do not correspond to the fatty acids previously determined to be associated with cellular lipids. Moreover, the fatty acids of extracellular lipids do not reflect the chain length of the n-alkane growth substrate.  相似文献   

11.
Fundus of stomach is fixed in 10% formalin (aqueous), Bouin's fluid or 5% trichloracetic acid (aqueous). It is embedded in paraffin, and 7μ sections are cut, mounted, deparaffinized and passed to 70% alcohol and then stained as follows: Mordant 3 min. in saturated Bismarck brown in 70% alcohol. Rinse in 70% alcohol, pass to distilled water, then overstain (2 hr.) in aniline blue, 0.5% solution in 2.5% acetic acid (aqueous). Precipitate the anilin blue with 0.5 ml. of 0.1% methyl violet solution (aqueous) dropped on die slide. Leave on 2 min. or less. Wash and differentiate in 70% alcohol. (Parietal cells dark blue). Stain 30 min. in a mixture of hematein, 0.10g.; A1C13 cryst., 0.05g.; and 70% alcohol 50 ml., prepared just before use and not filtered. Rinse in 70% alcohol and differentiate with an alcoholic extract of saffron (2 g. saffron pistils in 100 ml. 90% alcohol at 60°C. for 6 hr.) while observing the progress of differentiation microscopically. Dehydrate by dropping a 0.1 % solution of acetic acid in absolute alcohol on the section for 30 sec., followed by pure absolute alcohol, xylene, and covering in balsam.  相似文献   

12.
Fundus of stomach is fixed in 10% formalin (aqueous), Bouin's fluid or 5% trichloracetic acid (aqueous). It is embedded in paraffin, and 7μ sections are cut, mounted, deparaffinized and passed to 70% alcohol and then stained as follows: Mordant 3 min. in saturated Bismarck brown in 70% alcohol. Rinse in 70% alcohol, pass to distilled water, then overstain (2 hr.) in aniline blue, 0.5% solution in 2.5% acetic acid (aqueous). Precipitate the anilin blue with 0.5 ml. of 0.1% methyl violet solution (aqueous) dropped on die slide. Leave on 2 min. or less. Wash and differentiate in 70% alcohol. (Parietal cells dark blue). Stain 30 min. in a mixture of hematein, 0.10g.; A1C13 cryst., 0.05g.; and 70% alcohol 50 ml., prepared just before use and not filtered. Rinse in 70% alcohol and differentiate with an alcoholic extract of saffron (2 g. saffron pistils in 100 ml. 90% alcohol at 60°C. for 6 hr.) while observing the progress of differentiation microscopically. Dehydrate by dropping a 0.1 % solution of acetic acid in absolute alcohol on the section for 30 sec., followed by pure absolute alcohol, xylene, and covering in balsam.  相似文献   

13.
M Elleder 《Histochemistry》1975,44(4):345-348
A new procedure for the detection of apolar lipids is described. It is a modification of the OTAN method (Adams, 1959) using periodic acid which oxidatively removes lower osmium derivatives from polar sites only, leaving those in apolar lipids intact and demonstrable with alpha-naphthylamine. Control steps for the exclusion of the possible interference of some less polar complex lipids and of lipopigments are described. The described technic is superior to the conventionally used sudan dyes due partly to the fact that only aqueous solutions are employed thus excluding any extraction of lipids, partly to the more distinct coloration.  相似文献   

14.
Unsaturated periodic acid-Schiff (PAS) stainable lipids of renal basement membranes are soluble in lipid solvents and do not add to the PAS staining in paraffin embedded sections. These lipids contribute to the staining of basement membranes in frozen sections. Pure sphingomyelin is stained by the PAS method if the oxidising solution is sufficiently acid and the time allowed for periodic oxidation is sufficient. This staining is considered to depend on splitting of the amide link between sphingosine and the fatty acid which leaves the 1-amino-2-hydroxyl grouping of sphingosine available for reacting with the periodic acid.  相似文献   

15.
A method for quantitative determination of acidic phospholipids by thin-layer chromatography (TLC) followed by densitometry is described. The total lipids were separated into neutral and acidic fractions by DEAE-Sephadex column chromatography. A clear-cut separation of acidic phospholipids was achieved by high-performance TLC with a solvent system of chloroform/acetone/acetic acid/formic acid/water (60/60/4/10/3). Each phospholipid band was quantitated by densitometry with the use of an internal standard. The lipid compositions of sheep and mouse erythrocytes and of rat liver and kidney were determined by the present method.  相似文献   

16.
Unsaturated periodic acid-Schiff (PAS) stainable lipids of renal basement membranes are soluble in lipid solvents and do not add to the PAS staining in paraffin embedded sections. These lipids contribute to the staining of basement membranes in frozen sections. Pure sphingomyelin is stained by the PAS method if the oxidising solution is sufficiently acid and the time allowed for periodic oxidation is sufficient. This staining is considered to depend on splitting of the amide link between sphingosine and the fatty acid which leaves the 1-amino-2-hydroxyl grouping of sphingosine available for reacting with the periodic acid.  相似文献   

17.
—Peripheral nerves which have been fixed in a mixture of formaldehyde and acetic acid and stained according to the method of Davenport can be successfully counterstained for demonstration of myelin sheaths and stroma. After mounted sections have been silvered, reduced and toned, the coating of nitrocellulose is removed by passing thru two changes of acetone. Following brief washes in 100,95,85 and 75% alcohols they are stained in an acidified aqueous solution of azo carmine for 30 to 60 minutes. Excess azo carmine is extracted with anilin alcohol followed by acetic alcohol after which the sections are mordanted for 15 to 60 minutes in a 5% aqueous solution of phosphotungstic acid. Without washing they are transferred to a stain mixture of either anilin blue and orange G (acidified) or light green and orange G (acidified) where they remain from 1 to 5 hours. After destaining in 95% alcohol and dehydration in absolute alcohol the sections are mounted in dammar. Result: axons stain black; sheath and fibroblast nuclei, red; myelin sheaths, orange; and connective tissue, blue or green. When the counterstains are applied to ganglia, cytological details of individual cells are demonstrated.  相似文献   

18.
适于研究形成层活动的不脱蜡苏木精—番红染色法   总被引:3,自引:0,他引:3  
描述了一种适用于研究形成层浩大活动的石蜡切片法,材料用加甘油的FAA固定液固定,用代氏或哈氏苏木精番红对不胶蜡的切片同时染色、同样条件下分色,脱蜡后直接封片。此法快速有效,所制切片的重量不亚于、甚至更铖于常规染色法,制片可以长期保存而不退色.  相似文献   

19.
A new method was developed in this work for extraction of chitosan from the zygomycetes cell wall. It is based on the temperature-dependent solubility of chitosan in dilute sulfuric acid. Chitin is soluble in neither cold nor hot dilute sulfuric acid. Similarly chitosan is not soluble at room temperature but is dissolved in 1% H 2SO 4 at 121 degrees C within 20 min. The new method was developed to measure the chitosan content of the biomass and cell wall. The procedures were investigated by measuring phosphate, protein, ash, glucuronic acid, and degree of acetylation. The cell wall derivatives of fungus Rhizomucor pusillus were then examined by this new method. The results indicated 8% of the biomass as chitosan. After treatment with NaOH, the alkali-insoluble material (AIM) contained 45.3% chitosan. Treatment of AIM with acetic acid resulted in 16.5% acetic-acid-soluble material (AcSM) and 79.0% alkali- and acid-insoluble material (AAIM). AcSM is usually cited as pure chitosan, but the new method shows major impurities by, for example, phosphate. Furthermore, AAIM is usually considered to be the chitosan-free fraction, whereas the new method shows more than 76% of the chitosan present in AIM is found in AAIM. It might indicate the inability of acetic acid to separate chitosan from the cell wall.  相似文献   

20.
The applicability of Luxol fast blue MBS as a 0.1% solution in 0.05% acetic acid to the staining of mitochondria, first recognized in rat kidney by Shanklin and Nassar (Stain Techn., 34: 257-60. 1959), was confirmed in various organs (formalin-Zenker and Regaud's fixations; paraffin embedding) of the mouse and bullfrog. In liver cells and in the epithelium of renal tubules, mitochondria were stained green, selectively and clearly. The dark cells of the renal tubules and the middle piece of sperms in both animals were conspicuously demonstrated by their dense assemblages of green granules. The periodic acid-Schiff procedure proposed by Shanklin and Nassar as a counterstain was replaced by staining in 0.5% aqueous phloxine, 2-3 min; differentiation in 5% phosphotungstic acid, 2 min; and washing in water, 5 min. This simplified and accelerated the techique, and gave a better color contrast. Advantages of Luxol fast blue MBS and phloxine staining over traditional methods for mitochondria in paraffin sections are: durability of the stain, high specificity, simplicity of procedure, and constant result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号