首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen viability of Juniperus communis L. and other gymnosperms with taxoid type pollen cannot be assessed with the more common viability tests because the thick sporoderm prevents reagents from penetrating into the cytoplasm. Here we describe a technique for pre‐hydration of pollen that overcomes this problem so that the common FCR test can be used to assess its viability. Pollen of J. communis must be re‐hydrated by suspending in water. This re‐hydration causes the splitting of the exine and a huge swelling of the intine. The sporoderm becomes permeable to fluoresceine diacetate and the FCR‐viability test can be applied. The FCR result is supported by scoring the germination percentage in vitro.  相似文献   

2.
The existence of different kinds of kinases in pollen and pollen tubes suggests that kinase-mediated signaling pathways are likely involved in regulating pollen germination and pollen tube growth during the life cycle of higher plants. We have used RT-PCR and RACE to isolate full-length cDNAs for two pollen-expressed kinases, named NtPK1 and NtPK2, of Nicotiana tabacum. NtPK1 and NtPK2 encode proteins of 365 and 369 amino acids with calculated molecular masses of 39.2 kDa and 39.5 kDa, respectively, and both proteins possess the 12 sub-domains that are conserved among protein kinases. The nucleotide and deduced amino acid sequences of NtPK1 and NtPK2 share 88% and 91% identity, respectively, with the C-terminal region being the most conserved. RT-PCR analysis revealed that NtPK1 was specifically expressed in pollen and pollen tubes, and that NtPK2 was also expressed in pistil and petal. Immunoblot analysis using anti-NtPK1 and anti-NtPK2 antibodies confirmed that both NtPK1 and NtPK2 were produced in pollen and pollen tubes, and that NtPK2 was also produced in developing male gametophytes and other floral tissues. Biochemical fractionation experiments showed that, in all the tissues examined, NtPK1 and NtPK2 were present in the cytosolic fraction and not in the microsomal fraction. NtPK1 and NtPK2 were found to autophosphorylate on threonine and, for NtPK2, on serine as well. All the results taken together suggest that NtPK1 and NtPK2 are novel receptor-like cytosolic serine/threonine kinases, and could mediate signaling pathways required for pollen germination and/or pollen tube growth.The nucleotide sequence data of NtPK1 and NtPK2 reported in this paper will appear in the EMBL/GenBank/DDBJ nucleotide sequence databases under the accession numbers AJ608156 and AJ608157, respectively  相似文献   

3.
Pollen germination, division of the generative nucleus and position of the generative nucleus in the pollen tube during in vitro germination were examined for six bromeliad cultivars. The influence of mixed amino acids (casein hydrolysate) and individual amino acids (Arg, Asn, Asp, Glu, Gly, Met, Phe, Orn, Tyr) were tested. Aechmea fasciata and A. chantinii pollen tubes showed more generative nuclear division in cultured pollen tubes than the other four cultivars tested. Casein hydrolysate did not stimulate generative nuclear division. In general arginine (1 mM) improved division of the Aechmea generative nucleus and to a lesser extent this of Vriesea `Christiane', Guzmania lingulata and Tillandsia cyanea. A concentration of 2 mM arginine reduced pollen tube growth of Aechmea. The vegetative nucleus was ahead of the generative nucleus in approximately 50% of the pollen tubes of all cultivars studied. In about 25% of the pollen tubes, the generative nucleus was ahead and in ±25% pollen tubes the vegetative and generative nuclei were joined together. The distance between the two generative nuclei and the distance from the generative nuclei to the pollen tube tip differed significantly for Aechmea fasciata and A. chantinii. The influence of different amino acids for Aechmea fasciata and A. chantinii varied with respect to pollen germination and generative nuclear division. Arg and Met improved nuclear division of both Aechmea cultivars. Pollen germination and sperm cell production were not linked. This information is important to ameliorate in vitro pollination methods used to overcome fertilization barriers in Bromeliaceae and other higher plants.  相似文献   

4.
Ten amino acids, namely, arginine, histidine, lysine, tryptophane, methionine, phenylalanine, leucine, valine, threonine and serine were indispensable for growth of rabbit blastocysts in vitro; others were nonessential. Of all the essential amino acids, arginine and lysine were required in relatively high concentrations, 10?2 M and 10?3 M, respectively, for optimum growth. Complete omission of the non-essential amino acids from the medium markedly reduced blastocyst growth. Interaction between serine and glycine demonstrated a partial sparing action on serine by glycine, similar to that observed between methionine and cysteine. The amino acid composition of a culture medium capable of providing continuous and consistent growth of rabbit blastocysts in vitro is described.  相似文献   

5.
The pollen grain germinationin vitro and progamic phase till fertilization inOenothera hookeri de Vries was observed after open and controlled pollination. The same pattern of pollen grain germination was foundin vitro and on the stigma. The pollen tubes can germinate from 1,2 or 3 poruses of the pollen grain, divide and branch during their growth in the ovary. The branches are of different length and give secondary splits. Special short branches are formed near the micropyle of the ovule. They grow into top part of integments. The pollen tubes start to branch profusely near the placental surface. In that place they are likely to react to the stimulus from mature ovules which seems to be dispersed in the exudate covering placenta.  相似文献   

6.
Summary Nearly 30 years ago the conditions for culturing immature cotton ovules were established to serve as a working research tool for investigating the physiology and biochemistry of fiber development. Not only has this tissue culture method been employed to characterize the biochemistry of plant cell expansion and secondary cell wall synthesis, but ovule cultures have contributed to numerous other aspects of plant cell physiology and development as well. In addition to basic studies on fiber development, cotton ovule cultures have been used to examine plant-fungal interactions, to model low temperature stress responses, to elucidate the pathways responsible for pigment formation in naturally pigmented fiber and to probe how cytoskeletal elements regulate cell wall organization. Success in rescuing Gossypium interspecific hybrids was dependent on ovule culture media formulations that could support early embryo development in ovulo. As tissues produced in culture are analyzed by increasingly more sophisticated techniques, there appear to be some differences between ovule growth in planta and ovule growth in vitro. Discerning how ovule culture fiber development is different from fiber development in field-grown plants can contribute valuable information for crop improvement. Cotton ovule cultures are an especially attractive model system for studying the effects of gravity on cell elongation, cellulose biosynthesis and embryo development and are excellent targets for examining transient expression of introduced gene constructs. With only minor modification, the procedure originally described by C. A. Beasley and I. P. Ting for growing cotton ovules in vitro will continue to be useful research tool for the foreseeable future.  相似文献   

7.
During in vitro pollen tube growth of Aechmea fasciata the second pollen mitosis (PM II) that produces two sperm cells was influenced by exogenous amino acids. Arginine (Arg) as single amino acid was the limiting factor for the second mitosis of the generative nucleus and thus the formation of sperm cells in cultured pollen tubes of A. fasciata. The involvement of Arg was probably related to protein synthesis. The need for Arg was not related to polyamine (PA) biosynthesis, since PA added to the germination medium were unfavourable for sperm cell production. Both ornithine (Orn) and difluoromethylornithine (DFMO) inhibited the second mitosis in cultured pollen tubes of A. fasciata. The addition of Arg during the first 2 h of pollen germination was necessary to establish the division of the generative nucleus 6 h later.  相似文献   

8.
The aims of this work were to improve a basal synthetic medium (BM) for the growth of Lactobacillus plantarum strains and to establish their amino-acid requirements. Amino-acid use was analyzed in the most nutritionally demanding bacterium. First, the improved BM (L. plantarum synthetic medium [LPSM]) was created by increasing some vitamins in the BM, especially p-aminobenzoic acid, vitamin B12, and biotin; 5-fold phenylalanine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, and tryptophan; and 10-, 60-, and 75-fold valine, arginine, and tyrosine, respectively. With these additions, the N8 and N4 strains of L. plantarum grew rapidly to reach final cell densities similar to those obtained in Mann–Rogosa–Sharpe medium. When cysteine, leucine, valine, isoleucine, threonine, and glutamic acid were individually removed from this medium, bacterial growth significantly decreased or ceased, indicating that these amino acids are essential for growth. The N4 strain also required lysine and tryptophan in addition to the six amino acids necessary for growth. L. plantarum N4 mainly consumed essential amino acids, such as valine, lysine, cysteine, and threonine as well as the stimulatory amino acid, arginine. Thus, the BM was improved mainly on the basis of annulling limitations with respect to amino acids. With this, improved medium cell densities in the order of 109 colony-forming units/mL have been achieved, indicating that LPSM medium could be used for conducting metabolic and genetic studies on L. plantarum. Their low levels in orange juice suggest that these amino acids may not satisfy the total nitrogen requirement for the development of L. plantarum in the natural environment.  相似文献   

9.
To understand the molecular mechanism of ovule development, a MADS box gene,HoMADS 1, has been isolated from the ovule tissues of Hyacinthus. Sequence comparison showed that HoMADS 1 is highly homologous to both class C and D genes. Furthermore, phylogenetic analysis suggests that HoMADS 1 is most likely a class D MADS box gene. RNA hybridization revealed that HoMADS 1 was exclusively expressed in the ovules. Over-expressing HoMADS 1 in transgenic Arabidopsis plants produced ectopic carpelloid structures, including ovules, indicating that HoMADS 1 is involved in the determination of carpel and ovule identities. Interestingly, during in vitro flowering, no HoMADS 1 mRNA was detected in the floral tissues at high level hormones in the media. However, HoMADS 1 mRNA accumulated in the floral tissues when the regenerated flowers were transferred to the media containing low level hormones which could induce in vitro ovule formation. Our data suggest that the induction of HoMADS 1 by plant hormones may play important roles during ovule initiation and development in the regenerated flower. Whether HoMADS 1 expression is also regulated by cytokinin and auxin during ovule development in planta remains to be investigated.  相似文献   

10.
Distyly, floral polymorphism frequently associated with reciprocal herkogamy, self‐ and intramorph incompatibility and secondary dimorphism, constitutes an important sexual system in the Rubiaceae. Here we report an unusual kind of distyly associated with self‐ and/or intramorph compatibility in a perennial herb, Hedyotis acutangula. Floral morphology, ancillary dimorphisms and compatibility of the two morphs were studied. H. acutangula did not exhibit precise reciprocal herkogamy, but this did not affect the equality of floral morphs in the population, as usually found in distylous plants. Both pin and thrum pollen retained relatively high viability for 8 h. The pollen to ovule ratio was 72.5 in pin flowers and 54.4 in thrum flowers. Pistils of pin flowers remained receptive for longer than those of thrum flowers. No apparent difference in the germination rate of pin and thrum pollen grains was observed when cultured in vitro, although growth of thrum pollen tubes was much faster than that of pin pollen tubes. Artificial pollination revealed that pollen tube growth in legitimate intermorph crosses was faster than in either intramorph crosses or self‐pollination, suggesting the occurrence of cryptic self‐incompatibility in this species. Cryptic self‐incompatibility functioned differently in the two morphs, with pollen tube growth rates after legitimate and illegitimate pollination much more highly differentiated in pin flowers than in thrum flowers. No fruit was produced in emasculated netted flowers, suggesting the absence of apomixis. Our results indicate that H. acutangula is distylous, with a cryptic self‐incompatibility breeding system.  相似文献   

11.
Phosphoinositide-specific phospholipase C (PI-PLC) is an important enzyme, which is a key player involved in eukaryotic signal transduction pathways. In plants, it plays a key role in growth and development as well as environmental stress. However, little is known about its roles in signal transduction during sexual reproduction process. In this study, we cloned and characterized a gene of full-length PI-PLC from ovules of Torenia fournieri, designated as TfPLC1. It was 2,171 bp in length, including an open reading frame encoding a polypeptide of 583 amino acids with molecular mass of 66.02 kDa. The amino acid sequence deduced from the cDNA sequence shows 40–76% similarity to other plant PI-PLCs and contains the characteristic X, Y and C2 domains. Northern blot analysis demonstrated it was predominantly expressed in ovules and flowers. Furthermore, TfPLC1 promoter::GUS transgenic analysis indicated it specifically expressed in ovule, stigma and mature pollen grain. Immunohistochemical staining showed that, in mature stigma, TfPLC1 protein was principally localized in the cells of stigmatic receptive surface. Together, our data suggest that TfPLC1 may play an important role in plant sexual reproduction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The pollination droplet is a highly conservative pollination mechanism that is observed in all major gymnosperm taxa. Proteomics analysis of the pollination drops was carried out on four gymnosperm species: Juniperus communis (common juniper), Juniperus oxycedrus (prickly juniper), Chamaecyparis lawsoniana (Port Orford cedar), and Welwitschia mirabilis. Pollination drop proteins were purified by SDS-PAGE, and the most abundant proteins were analyzed by mass spectrometry and sequenced. Based on BLAST searching of combined amino acid sequences, the following proteins were identified in the following species: an 83-kDa subtilisin-like proteinase, a 62-kDa glycosyl hydrolase, a 47.5-kDa glucan 1,3-β-glucosidase precursor, a 30-kDa chitinase, and a 25-kDa thaumatin-like protein were identified in J. communis; a 30-kDa chitinase, a 25-kDa thaumatin-like protein, and a 32.5-kDa glucanase-like protein were identified in J. oxycedrus; an 83-kDa subtilisin-like proteinase, a 62-kDa β-d-glucan exohydrolase, a 47.5-kDa glucan 1,3-β-glucosidase, and two 25-kDa thaumatin-like proteins were identified in C. lawsoniana, and a 25-kDa chitinase was identified in W. mirabilis. Based on protein identifications, there is strong evidence that the pollination drop functions in both pathogen defense and pollen development. The discovery of similarities in terms of peptide sequence and protein identifications indicates that ovular secretions are functionally conservative, and that they are essential to reproductive success.  相似文献   

13.
Several coniferous species belonging to the Pinaceae family can be propagated via somatic embryogenesis, while species belonging to the Cupressaceae family cannot. The aim of this study was to identify possibilities and limitations with somatic embryogenesis in Cupressaceae. Juniperus communis was chosen as model species. We show that a high initiation frequency of embryogenic cell lines can be established from intact megagametophytes at the time when intensive cleavage polyembryogeny takes place. The embryogenic cell lines proliferate fast on medium lacking plant growth regulators. Early somatic embryos develop after transfer to medium with decreased content of nitrogen and calcium. The early embryos mature after exposure to abscisic acid. Mature cotyledonary embryos germinate after partial desiccation. A high proportion, over 40%, of the germinating embryos retain the embryogenic potential in the basal part, resulting in development of new embryogenic tissue.  相似文献   

14.
In S‐RNase‐mediated self‐incompatibility, S‐RNase secreted from the style destroys the actin cytoskeleton of the self‐pollen tubes, eventually halting their growth, but the mechanism of this process remains unclear. In vitro biochemical assays revealed that S‐RNase does not bind or sever filamentous actin (F‐actin). In apple (Malus domestica), we identified an actin‐binding protein containing myosin, villin and GRAM (MdMVG), that physically interacts with S‐RNase and directly binds and severs F‐actin. Immunofluorescence assays and total internal reflection fluorescence microscopy indicated that S‐RNase inhibits the F‐actin‐severing activity of MdMVG in vitro. In vivo, the addition of S‐RNase to self‐pollen tubes increased the fluorescence intensity of actin microfilaments and reduced the severing frequency of microfilaments and the rate of pollen tube growth in self‐pollination induction in the presence of MdMVG overexpression. By generating 25 single‐, double‐ and triple‐point mutations in the amino acid motif E‐E‐K‐E‐K of MdMVG via mutagenesis and testing the resulting mutants with immunofluorescence, we identified a triple‐point mutant, MdMVG(E167A/E171A/K185A), that no longer has F‐actin‐severing activity or interacts with any of the four S‐haplotype S‐RNases, indicating that all three amino acids (E167, E171 and K185) are essential for the severing activity of MdMVG and its interaction with S‐RNases. We conclude that apple S‐RNase interacts with MdMVG to reduce self‐pollen tube growth by inhibiting its F‐actin‐severing activity.  相似文献   

15.
Summary When the pollen tubes of Pisum sativum (initial line) and of its mutants are grown on a standard medium containing only sucrose, boric acid and agar-agar, no difference in maximum length was observed. But, while pollen tubes of the initial line took nine hours to reach this length, pollen tubes of the mutants needed only six hours. Growth seems to be faster in pollen tubes of the mutants than in those of the initial line.Further investigations examined the influence of twenty-one amino acids on pollen tube growth. With the initial line, these substances can be classified into three groups: those that promote pollen tube growth; those which have no influence upon its growth; and those which reduce its growth. The amino acids of each group are characterized by special structural properties. Those amino acids which accelerate pollen tube growth of the initial line show variable effects on the pollen tubes of the mutants. In some cases the same behaviour of pollen tubes can be observed whether amino acids are added or not, in others the addition of amino acids has a positive effect on pollen tube growth, though less than on pollen tubes of the initial line, and in a single case the addition of an amino acid is followed by a negative effect on growth.  相似文献   

16.
Abstract

Little is known about the reproduction of Dendrocalamus asper because it flowers only every 100 to 120 years. In the present work we describe some reproductive features of this bamboo and characterise flowers and pollen at various developmental stages. Number of pollen grains and ovules per flower, pollen/ovule ratio, in vitro twinning and pollen grain viability in vivo were evaluated and the different stages of floral development identified. Further, we performed a morphological analysis of androecium and pollen development. Seven distinct stages of flower development were identified; four initial stages, a pre-anthetic stage, and two stages of anthetic. Dendrocalamus asper pseudospikelets avoid inbreeding by means of protogyny. The floral and pollen characteristics suggest that the species is anemophilous. The ultrastructural characteristics of free microspores (stage two of floral development), vacuolated microspores (stage five) and mature pollen (anthetic) were analysed. During maturation, pollen grains accumulate larger and more numerous amyloplasts and organelles such as mitochondria. Pollen disperse in the tricellular development stage. Pollen is monoporate with an operculum-like pore, with a rugulate structure and a spinose tectum.  相似文献   

17.
  • Breeding systems of plants determine their reliance on pollinators and ability to produce seeds following self‐pollination. Self‐sterility, where ovules that are penetrated by self‐pollen tubes that do not develop into seeds, is usually considered to represent either a system of late‐acting self‐incompatibility or strong early inbreeding depression. Importantly, it can lead to impaired female function through ovule or seed discounting when stigmas receive mixtures of self and cross pollen, unless cross pollen is able to reach the ovary ahead of self pollen (‘prepotency’). Self‐sterility associated with ovule penetration by self‐pollen tubes appears to be widespread among the Amaryllidaceae.
  • We tested for self‐sterility in three Cyrtanthus species – C. contractus, C. ventricosus and C. mackenii – by means of controlled hand‐pollination experiments. To determine the growth rates and frequency of ovule penetration by self‐ versus cross‐pollen tubes, we used fluorescence microscopy to examine flowers of C. contractus harvested 24, 48 and 72 h after pollination, in conjunction with a novel method of processing these images digitally. To test the potential for ovule discounting (loss of cross‐fertilisation opportunities when ovules are disabled by self‐pollination), we pollinated flowers of C. contractus and C. mackenii with mixtures of self‐ and cross pollen.
  • We recorded full self‐sterility for C. contractus and C. ventricosus, and partial self‐sterility for C. mackenii. In C. contractus, we found no differences in the growth rates of self‐ and cross‐pollen tubes, nor in the proportions of ovules penetrated by self‐ and cross‐pollen tubes. In this species, seed set was depressed (relative to cross‐pollinated controls) when flowers received a mixture of self and cross pollen, but this was not the case for C. mackenii.
  • These results reveal variation in breeding systems among Cyrtanthus species and highlight the potential for gender conflict in self‐sterile species in which ovules are penetrated and disabled by pollen tubes from self pollen.
  相似文献   

18.
19.
With semi in vivo pollen tube growth assays, stigmas are pollinated in vivo and, after a fixed time interval, the styles are isolated from the ovary and placed on culture medium in vitro. Semi in vitro pollination includes isolation of the stigma and style complex, followed by pollination and placing the stylar end on nutrient medium. After semi in vivo pollination more and longer pollen tubes protruded from the cut end of the styles into medium, in comparison to semi in vitro pollination. Medium with 3 g l–1 agar was better than that with 6 g l–1 agar for pollen tube growth after the tubes emerged from the cut style. Semi in vitro pollination of the reversed style indicated that pollen tube growth was not influenced by the direction of the style. Fructose and glucose inhibited pollen tube growth compared to sucrose. Swollen tips characterized tube growth inhibition. After semi in vivo pollination all generative nuclei had divided to give two sperm nuclei. The average distance between the last sperm nucleus and the pollen tube tip as well as the distance between the two sperm nuclei diminished in growing pollen tubes between 24 and 48 h after pollination. The arrangements between the vegetative and the generative nuclei did not differ in semi in vivo and in vitro cultured pollen tubes of Aechmea fasciata. This information is important to explain why fertilization rate is low after placental pollination in comparison to placental grafted style pollination of Aechmea fasciata. The data may also contribute to the improvement of in vitro fertilization methods in Bromeliaceae and other higher plants.  相似文献   

20.
Summary The free amino acid content of the pollen grains and the style from three single cross hybrids (Wf9 x H55, Ky49 x Ky27, K64 x K55) and two inbred lines (Oh43, H55) was determined. No tyrosine was detected in the pollen grains of any genotype. Significant differences between pollen genotypes were found for aspartic acid, threonine, serine, lysine and histidine with no effect resulting from the vigor of the pollen source. No proline was found in the style of any genotype. Significant differences between style genotypes were obtained for threonine, serine, glutamic acid, leucine, tyrosine, ethanolanine, aminobutyric acid and histidine with a relationship between vigor of the style genotype present for tyrosine, ethanolanine and aminobutyric acid. The relationship between the pollen and style level for each amino acid as influenced by genotype was analyzed. A significant negative correlation was found only for threonine. Apparently, a complementary relationship between the pollen and style exists for some amino acids. Proline and tyrosine are available only from the pollen and style respectively. Threonine levels are balanced with varying contributions from both pollen and style depending on the genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号