首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria   总被引:22,自引:2,他引:20       下载免费PDF全文
The ATPase subunit 6, located in the inner mitochondrial membrane, is encoded by mitochondrial genomes in animals and fungi. We have isolated and characterized a mitochondrial gene, designated atp 6, that encodes the subunit 6 polypeptide of Zea mays. Nucleotide and predicted amino acid sequence comparisons have revealed a homology of 44.6 and 33.2% with the yeast ATPase subunit 6 gene and polypeptide, respectively. The predicted protein in maize contains 291 amino acids with a molecular weight of 31,721. Hydropathy profiles generated for the maize and yeast polypeptides are very similar and contain large hydrophobic domains, characteristic of membrane bound proteins. RNA transfer blot analysis indicates that atp 6 is actively transcribed. Interestingly, 122 base pairs of nucleotide sequence interior to atp 6 have extensive homology with the 5′ end of the cytochrome oxidase subunit II gene of maize mitochondria, suggesting recombination between the two genes.  相似文献   

2.
Summary The coding and flanking sequences of the 18S-5S ribosomal RNA genes and the cytochrome oxidase subunit II gene of Zea diploperennis mitochondrial DNA have been determined and compared to the corresponding sequences of normal maize (Zea mays L.) Both length and substitution mutations are found in the coding region of the 18S rRNA gene, whereas only one substitution mutation is found in the coding region of cytochrome oxidase II. Sequence divergence between maize and Zea diploperennis is about one-tenth of that between wheat and maize. The rate of nucleotide divergence by base substitution is less for plant mitochrondrial genes than for comparable genes in animal mitochondria.  相似文献   

3.
4.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

5.
The gene (coxII) encoding subunit II of Rhodobacter sphaeroides cytochrome c oxidase (cytochrome aa3) has been isolated by screening a genomic DNA library in phage lambda with a probe derived from coxII of Paracoccus denitrificans. A 2-kb fragment containing coxII DNA was subcloned into the phage M13mp18 and the sequence determined. The 2-kb insert contains the entire coding region for coxII gene, including the ATG start codon and a TGA stop codon. The deduced amino acid (aa) sequence of subunit II of R. sphaeroides shows regions of substantial homology to the corresponding subunit of the bovine mitochondrial oxidase (63% overall) and P. denitrificans oxidase (68% overall). The postulated redox-active copper ion (CuA) binding site involving two Cys and two His residues (as well as an alternative Met residue) is conserved among these species, along with four invariant acidic aa residues (two Asp and two Glu) that may be involved in interactions with cytochrome c, and a region of aromatic residues (Tyr-Gln-Trp-Tyr-Trp-Gly-Tyr-Glu-Tyr) which is postulated to play a role in electron transfer. Hydropathy profile analysis suggests that while the bovine COXII secondary structure contains two transmembrane helices, the R. sphaeroides subunit II has a third such helix that may function as part of a signal sequence, as suggested for P. denitrificans.  相似文献   

6.
7.
Bonen L  Boer PH  Gray MW 《The EMBO journal》1984,3(11):2531-2536
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity.  相似文献   

8.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt ? parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   

9.
I G Young  S Anderson 《Gene》1980,12(3-4):257-265
Bovine-heart mitochondrial DNA from a single animal was isolated and fragments representative of the entire genome cloned into multicopy plasmid vectors to facilitate determination of its complete nucleotide sequence. We present here the sequence of the region covering the gene for cytochrome oxidase subunit II. Comparison of this sequence with the amino acid sequence of the homologous beef-heart protein has enabled the determination of most of the bovine mitochondrial genetic code. The code differs from the "universal" genetic code in that UGA codes for tryptophan and not termination, and AUA codes for methionine and not isoleucine. The only codon family not represented is the AGA/AGG pair normally used for arginine; evidence from other genes suggests that these code for termination in bovine mitochondria. The sequence presented also includes the adjacent tRNAAsp and tRNALys genes. The tRNAAsp gene is separated by one nucleotide from the 5' end of the COII gene and only three bases separate the 3' end of this gene and the adjacent tRNALys gene. This highly compact gene organisation is very similar to that found in the corresponding region of the human mitochondrial genome and the gene arrangement is identical. The structure of the respective bovine and human tRNAs vary primarily the "D-" and "T psi C-loops".  相似文献   

10.
Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes.  相似文献   

11.
12.
Synthetic oligonucleotide probes were used to clone two loci from the chromosomal DNA of Paracoccus denitrificans that contain the genes for cytochrome c oxidase (cytochrome aa3). One locus seems to contain four or five genes probably forming an operon. Two of these code for the oxidase subunits II and III. Three open reading frames are found between the COII and COIII genes. The other locus codes for the subunit I. A short open reading frame is found upstream of this gene. All three subunits of the Paracoccus enzyme show remarkable homology to the corresponding subunits of the mitochondrial cytochrome oxidase. Possible protein products of the open reading frames have not yet been identified.  相似文献   

13.
Cytochrome c oxidase (EC 1.9.3.1) is one of the components of the electron transport chain by which Nitrobacter, a facultative lithoautotrophic bacterium, recovers energy from nitrite oxidation. The genes encoding the two catalytic core subunits of the enzyme were isolated from a Nitrobacter winogradskyi gene library. Sequencing of one of the 14 cloned DNA segments revealed that the subunit genes are side by side in an operon-like cluster. Remarkably the cluster appears to be present in at least two copies per genome. It extends over a 5–6 kb length including, besides the catalytic core subunit genes, other cytochrome oxidase related genes, especially a heme O synthase gene. Noteworthy is the new kind of gene order identified within the cluster. Deduced sequences for the cytochrome oxidase subunits and for the heme O synthase look closest to their counterparts in other α-subdivision Proteobacteria, particularly the Rhizobiaceae. This confirms the phylogenetic relationships established only upon 16S rRNA data. Furthermore, interesting similarities exist between N. winogradskyi and mitochondrial cytochrome oxidase subunits while the heme O synthase sequence gives some new insights about the other similar published α-subdivision proteobacterial sequences.  相似文献   

14.
Thirteen of the first fifteen amino acids from the NH2-terminus of the primary sequence of human cytochrome c oxidase subunit I and eleven of the first twelve amino acids of subunit II have been identified by microsequencing procedures. These sequences have been compared with the recently determined 5'-end proximal sequences of the HeLa cell mitochondrial mRNAs and unambiguously aligned with two of them. This alignment has allowed the identification of the putative mRNA for subunit I, and has shown that the initiator codon for this subunit is only three nucleotides away from the 5'-end of its mRNA; furthermore, the results have substantiated the idea that the translation of human cytochrome c oxidase subunit II starts directly at the 5'-end of its putative mRNA, as had been previously inferred on the basis of the sequence homology of human mitochondrial DNA with the primary sequences of the bovine subunit.  相似文献   

15.
Introns in the cytochrome oxidase subunit II (COXII) gene of plant mitochondrial DNA (mtDNA) have been observed only in monocots. The COXII genes in dicots investigated to date do not contain introns. This is the first report of an intron in the COXII gene of a dicot. The presence of an intron in the carrot COXII intron was verified by restriction mapping and hybridization using specific maize and wheat COXII probes. Regions of the carrot COXII intron are homologous to the maize COXII intron and homologous to the wheat COXII intron-insert as demonstrated by hybridization. Homology of these regions was confirmed by sequencing portions of the gene. A comparison of the restriction map of the carrot COXII gene with the restriction maps of the COXII genes from pea, Oenothera, maize, wheat, and rice revealed that the carrot map coincides with the rice restriction map.  相似文献   

16.
Sequences hybridizing to six mitochondrial DNA encoded polypeptide genes of Saccharomyces cerevisiae have been mapped in the 18·9 and 27·1 kbp2 circular mitochondrial DNAs from Torulopsis glabrata and Kloeckera africana. With the possible exception of cytochrome oxidase subunit 1 and ATPase subunit 6 genes, no two hybridizable sequences share the same order in the two mtDNAs nor is there any topographical similarity to S. cerevisiae mtDNA apart from the grouping mentioned above. Because sequence rearrangements are prevalent in yeast mitochondrial DNAs we infer that order is not critical for mitochondrial gene expression and that prokaryotic-like operons do not exist. In contrast to S. cerevisiae, the cytochrome b region in T. glabrata and K. africana is confined to 1·46 or 1·58 kbp, respectively, which suggests that intervening sequences in this gene are either small or absent. On the other hand, hybridizable sequences to a 5·2 kbp portion of the S. cerevisiae cytochrome oxidase subunit 1 gene, retaining exons 3 to 7 or 8, span 3 to 4 kbp in the two mtDNAs. In addition an 0·8 to 0·9 kbp intervening sequence is present in each case, which does not hybridize to either exon or intron regions of the S. cerevisiae probe. These results imply that the cytochrome oxidase subunit 1 gene in both mtDNAs has a mosaic organization of coding and noncoding sequences.  相似文献   

17.
Mitochondrial and nuclear DNAs contribute to encode the whole mitochondrial protein complement. The two genomes possess highly divergent features and properties, but the forces influencing their evolution, even if different, require strong coordination. The gene content of mitochondrial genome in all Metazoa is in a frozen state with only few exceptions and thus mitochondrial genome plasticity especially concerns some molecular features, i.e. base composition, codon usage, evolutionary rates. In contrast the high plasticity of nuclear genomes is particularly evident at the macroscopic level, since its redundancy represents the main feature able to introduce genetic material for evolutionary innovations. In this context, genes involved in oxidative phosphorylation (OXPHOS) represent a classical example of the different evolutionary behaviour of mitochondrial and nuclear genomes. The simple DNA sequence of Cytochrome c oxidase I (encoded by the mitochondrial genome) seems to be able to distinguish intra- and inter-species relations between organisms (DNA Barcode). Some OXPHOS subunits (cytochrome c, subunit c of ATP synthase and MLRQ) are encoded by several nuclear duplicated genes which still represent the trace of an ancient segmental/genome duplication event at the origin of vertebrates.  相似文献   

18.
19.
20.
Nuclear genotype affects mitochondrial genome organization of CMS-S maize   总被引:7,自引:0,他引:7  
Summary A WF9 strain of maize with the RD subtype of the S male-sterile cytoplasm (CMS-S) was converted to the inbred M825 nuclear background by recurrent backcrossing. The organization of the mitochondrial genomes of the F1 and succeeding backcross progenies was analyzed and compared with the progenitor RD-WF9 using probes derived from the S1 and S2 mitochondrial episomes, and probes containing the genes for cytochrome c oxidase subunit I (coxI), cytochrome c oxidase subunit II (coxII) and apocytochrome b (cob). Changes in mitochondrial DNA (mtDNA) organization were observed for S1-, S2-, and coxI-homologous sequences that involve loss of homologous restriction enzyme fragments present in the RD-WF9 progenitor. With the coxI probe, the loss of certain fragments was accompanied by the appearance of a fragment not detectable in the progenitor. The changes observed indicate the effect of the nuclear genome on the differential replication of specific mitochondrial subgenomic entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号