首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Costs of resistance, i.e. trade‐offs between resistance to parasites or pathogens and other fitness components, may prevent the fixation of resistant genotypes and therefore explain the maintenance of genetic polymorphism for resistance in the wild. Using two approaches, the cost of resistance to a sterilizing bacterial pathogen were tested for in the crustacean Daphnia magna. First, groups of susceptible and resistant hosts from each of four natural populations were compared in terms of their life‐history characteristics. Secondly, we examined the competitiveness of nine clones from one population for which more detailed information on genetic variation for resistance was known. In no case did the results show that competitiveness or life history characteristics of resistant Daphnia systematically differed from susceptible ones. These results suggest that costs of resistance are unlikely to explain the maintenance of genetic variation in D. magna populations. We discuss methods for measuring fitness and speculate on which genetic models of host‐parasite co‐evolution may apply to the Daphnia‐microparasite system.  相似文献   

2.
Pathogen infection is typically costly to hosts, resulting in reduced fitness. However, pathogen exposure may also come at a cost even if the host does not become infected. These fitness reductions, referred to as “resistance costs”, are inducible physiological costs expressed as a result of a trade‐off between resistance to a pathogen and aspects of host fitness (e.g., reproduction). Here, we examine resistance and infection costs of a generalist fungal pathogen (Metschnikowia bicuspidata) capable of infecting a number of host species. Costs were quantified as reductions in host lifespan, total reproduction, and mean clutch size as a function of pathogen exposure (resistance cost) or infection (infection cost). We provide empirical support for infection costs and modest support for resistance costs for five Daphnia host species. Specifically, only one host species examined incurred a significant cost of resistance. This species was the least susceptible to infection, suggesting the possibility that host susceptibility to infection is associated with the detectability and size of resistance cost. Host age at the time of pathogen exposure did not influence the magnitude of resistance or infection cost. Lastly, resistant hosts had fitness values intermediate between unexposed control hosts and infected hosts. Although not statistically significant, this could suggest that pathogen exposure does come at some marginal cost. Taken together, our findings suggest that infection is costly, resistance costs may simply be difficult to detect, and the magnitude of resistance cost may vary among host species as a result of host life history or susceptibility.  相似文献   

3.
Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line). In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.  相似文献   

4.
Adaptations conferring resistance to xenobiotics (antibiotics, insecticides, herbicides, etc.) are often costly to the organism's fitness in the absence of the selecting agent. In such conditions, and unless other mutations compensate for the costs of resistance, sensitive individuals are expected to out-reproduce resistant individuals and drive resistance alleles to a low frequency, with the rate and magnitude of this decline being proportional to the costs of resistance. However, this evolutionary dynamic is open to modification by other sources of selection acting on the relative fitness of susceptible and resistant individuals. Here we show parasitism not only as a source of selection capable of modifying the costs of organophosphate insecticide resistance in mosquitoes, but also that qualitatively different interactions (increasing or decreasing the relative fitness of resistant individuals) occurred depending on the particular form of resistance involved. As estimates of the parasite's fitness also varied according to its host's form of resistance, our data illustrate the potential for epidemiological feedbacks to influence the strength and direction of selection acting on resistance mutations in untreated environments.  相似文献   

5.
Resistance responses can impose fitness costs when pests are absent. Here, we test whether the induction of resistance can decrease fitness even in plants under attack; we call this potential outcome a net cost with attack. Using lines in which genetic background was controlled, we investigated whether susceptible Arabidopsis thaliana plants can outperform R gene resistant plants when infected with pathogens. For the R gene RPS2, there was a fitness benefit of resistance in the presence of intraspecific competition, but there was a net cost in the absence of competition: resistant plants produced less seed than susceptible plants even though infected with Pseudomonas syringae. This net cost was primarily due to overcompensation by susceptible plants, which occurred because of a developmental response to infection. For the R gene RPP5, there was no fitness effect of resistance without competition but a net cost when plants were infected with Peronospora parasitica in the presence of competition. This net cost was due to a reduction in the fitness of infected, resistant plants and complete compensation in susceptible plants. A spatially variable model suggests that a trade-off between net benefits and net costs with attack may help explain the persistence of individuals lacking R gene resistance to disease.  相似文献   

6.
Host-parasite coevolution is often described as a process of reciprocal adaptation and counter adaptation, driven by frequency-dependent selection. This requires that different parasite genotypes perform differently on different host genotypes. Such genotype-by-genotype interactions arise if adaptation to one host (or parasite) genotype reduces performance on others. These direct costs of adaptation can maintain genetic polymorphism and generate geographic patterns of local host or parasite adaptation. Fixation of all-resistant (or all-infective) genotypes is further prevented if adaptation trades off with other host (or parasite) life-history traits. For the host, such indirect costs of resistance refer to reduced fitness of resistant genotypes in the absence of parasites. We studied (co)evolution in experimental microcosms of several clones of the freshwater protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. After two and a half years of culture, inoculation of evolved and naive (never exposed to the parasite) hosts with evolved and founder parasites revealed an increase in host resistance, but not in parasite infectivity. A cross-infection experiment showed significant host clone-by-parasite isolate interactions, and evolved hosts tended to be more resistant to their own (local) parasites than to parasites from other hosts. Compared to naive clones, evolved host clones had lower division rates in the absence of the parasite. Thus, our study indicates de novo evolution of host resistance, associated with both direct and indirect costs. This illustrates how interactions with parasites can lead to the genetic divergence of initially identical populations.  相似文献   

7.
Newly occurring adaptive genes, such as those providing insecticide resistance, display a fitness cost which is poorly understood. In order to detect subtle behavioural changes induced by the presence of resistance genes, we used natural predators and compared their differential predation on susceptible and resistant Culex pipiens mosquitoes, using strains with a similar genetic background. Resistance genes were either coding an overproduced detoxifying esterase (locus Ester), or an insensitive target (locus ace-1). Differential predation was measured between susceptible and resistant individuals, as well as among resistant mosquitoes. A backswimmer, a water measurer, a water boatman and a predaceous diving beetle were used as larval predators, and a pholcid spider as adult predator. Overall, the presence of a resistance gene increased the probability of predation: all resistance genes displayed predation costs relative to susceptible ones, at either the larval or adult stage, or both. Interestingly, predation preferences among the susceptible and the resistance genes were not ranked uniformly. Possible explanations for these results are given, and we suggest that predators, which are designed by natural selection to detect specific behavioural phenotypes, are useful tools to explore non-obvious differences between two classes of individuals, for example when they differ by the presence or absence of one recent gene, such as insecticide resistance genes.  相似文献   

8.
Yan G  Severson DW 《Genetics》2003,164(2):511-519
Models on the evolution of resistance to parasitism generally assume fitness tradeoffs between the costs of being parasitized and the costs associated with resistance. This study tested this assumption using the yellow fever mosquito Aedes aegypti and malaria parasite Plasmodium gallinaceum system. Experimental mosquito populations were created by mixing susceptible and resistant strains in equal proportions, and then the dynamics of markers linked to loci for Plasmodium resistance and other unlinked neutral markers were determined over 12 generations. We found that when the mixed population was maintained under parasite-free conditions, the frequencies of alleles specific to the susceptible strain at markers closely linked to the loci for resistance (QTL markers) as well as other unlinked markers increased significantly in the first generation and then fluctuated around equilibrium frequencies for all six markers. However, when the mixed population was exposed to an infected blood meal every generation, allele frequencies at the QTL markers for resistance were not significantly changed. Small population size caused significant random fluctuations of allele frequencies at all marker loci. Consistent allele frequency changes in the QTL markers and other unlinked markers suggest that the reduced fitness in the resistant population has a genome-wide effect on the genetic makeup of the mixed population. Continuous exposure to parasites promoted the maintenance of alleles from the resistant Moyo-R strain in the mixed population. The results are discussed in relation to the proposed malaria control strategy through genetic disruption of vector competence.  相似文献   

9.
Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin‐based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug‐resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance‐mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance‐mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness‐mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.  相似文献   

10.
Evolved resistance to xenobiotics and parasites is often associated with fitness costs when the selection pressure is absent. Resistance to the widely used microbial insecticide Bacillus thuringiensis (Bt) has evolved in several insect species through the modification of insect midgut binding sites for Bt toxins, and reports of costs associated with Bt resistance are common. Studies on the costs of Bt-resistance restrict the insect to a single artificial diet or host-plant. However, it is well documented that insects can self-select appropriate proportions of multiple nutritionally unbalanced foods to optimize life-history traits. Therefore, we examined whether Bt-resistant and susceptible cabbage loopers Trichoplusia ni differed in their nutrient intake and fitness costs when they were allowed to compose their own protein:carbohydrate diet. We found that Bt-resistant T. ni composed a higher ratio of protein to carbohydrate than susceptible T. ni. Bt-resistant males exhibited no fitness cost, while the fitness cost (reduced pupal weight) was present in resistant females. The absence of the fitness cost in resistant males was associated with increased carbohydrate consumption compared to females. We demonstrate a sex difference in a fitness cost and a new behavioural outcome associated with Bt resistance.  相似文献   

11.
Parasites can promote diversity by mediating coexistence between a poorer and superior competitor, if the superior competitor is more susceptible to parasitism. However, hosts and parasites frequently undergo antagonistic coevolution. This process may result in the accumulation of pleiotropic fitness costs associated with host resistance, and could breakdown coexistence. We experimentally investigated parasite‐mediated coexistence of two genotypes of the bacterium Pseudomonas fluorescens, where one genotype underwent coevolution with a parasite (a virulent bacteriophage), whereas the other genotype was resistant to the evolving phages at all time points, but a poorer competitor. In the absence of phages, the resistant genotype was rapidly driven extinct in all populations. In the presence of the phages, the resistant genotype persisted in four of six populations and eventually reached higher frequencies than the sensitive genotype. The coevolving genotype showed a reduction in the growth rate, consistent with a cost of resistance, which may be responsible for a decline in its relative fitness. These results demonstrate that the stability of parasite‐mediated coexistence of resistant and susceptible species or genotypes is likely to be affected if parasites and susceptible hosts coevolve.  相似文献   

12.
Transgenic corn, Zea mays L., expressing the Bacillus thuringiensis Berliner (Bt) protein Cry1F has been registered for Spodoptera frugiperda (J. E. Smith) control since 2003 in the USA. Unexpected damage to Cry1F corn was reported in 2006 in Puerto Rico, and Cry1F resistance in S. frugiperda from Puerto Rico was documented. The study of fitness costs associated with insect resistance to Bt insecticidal proteins is important for understanding resistance evolution and for evaluating resistance management practices used to mitigate resistance to transgenic corn. Currently, no studies have addressed the fitness costs associated with Cry1F resistance in S. frugiperda. In this study, susceptible and resistant strains with similar genetic background and their reciprocal crosses were used to estimate Cry1F resistance fitness costs. Comparisons between life‐history traits and population growth rates of homozygous susceptible, heterozygous and homozygous resistant S. frugiperda were used to determine whether the resistance is associated with fitness costs. Major fitness costs were not apparent in either heterozygotes or homozygous resistant insects. However, there was a slight indication of hybrid vigour in the heterozygotes. Additionally, two lines in which the frequency of the resistant alleles was fixed at 0.5 were followed for seven generations, after which the frequency of resistant alleles slightly decreased in both lines. The lack of strong fitness costs associated with Cry1F resistance in S. frugiperda indicates that initial allele frequencies may be higher than expected in field populations and will tend to remain stable in field populations in the absence of selection pressure (e.g. Puerto Rico).  相似文献   

13.
Fitness costs are frequently invoked to explain the presence of genetic variation underlying plant defense across many types of damaging agents. Despite the expectation that costs of resistance are prevalent, however, they have been difficult to detect in nature. To examine the potential that resistance confers a fitness cost, we examined the survival and fitness of genetic lines of the common morning glory, Ipomoea purpurea, that diverged in the level of resistance to the herbicide glyphosate. We planted a large field experiment and assessed survival following herbicide application as well as fitness of the divergent selection lines in the absence of the herbicide. We found that genetic lines selected for increased resistance exhibited lower death compared to control and susceptible lines in the presence of the herbicide, but no evidence that resistant lines produced fewer seeds in the absence of herbicide. However, susceptible lines produced more viable seeds than resistant or control lines, providing some evidence of a fitness cost in terms of seed germination, and thus potential empirical support for the expectation of trait trade‐offs as a consequence of adaptation to novel environments.  相似文献   

14.
Crops producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn borer, Ostrinia nubilalis Hübner, is a significant pest of maize and is widely managed with Bt maize in the Midwest of the United States. When Bt crops are grown in conjunction with non‐Bt refuges, fitness costs of Bt resistance can delay the evolution of resistance. Importantly, fitness costs often vary with ecological factors, including host‐plant genotype and diapause. In this study, we examined fitness costs associated with Cry1F resistance in O. nubilalis when insects were reared on three maize lines. Fitness costs were tested in two experiments. One experiment assessed the fitness costs when Cry1F‐resistant and Cry1F‐susceptible insects were reared on plants as larvae and experienced diapause. The second experiment tested resistant, susceptible and F1 heterozygotes that were reared on plants but did not experience diapause. Despite some evidence of greater adult longevity for Cry1F‐resistant insects, these insects produced fewer fertile eggs than Cry1F‐susceptible insects, and this occurred independent of diapause. Reduced fecundity was not detected among heterozygous individuals, which indicated that this fitness cost was recessive. Additionally, maize lines did not affect the magnitude of this fitness cost. The lower fitness of Cry1F‐resistant O. nubilalis may contribute to the maintenance of Cry1F susceptibility in field populations more than a decade after Cry1F maize was commercialized.  相似文献   

15.
Evolutionary costs of parasite resistance arise if genes conferring resistance reduce fitness in the absence of parasites. Thus, parasite-mediated selection may lead to increased resistance and a correlated decrease in fitness, whereas relaxed parasite-mediated selection may lead to reverse evolution of increased fitness and a correlated decrease in resistance. We tested this idea in experimental populations of the protozoan Paramecium caudatum and the parasitic bacterium Holospora undulata. After eight years, resistance to infection and asexual reproduction were compared among paramecia from (1) "infected" populations, (2) uninfected "naive" populations, and (3) previously infected, parasite-free "recovered" populations. Paramecia from "infected" populations were more resistant (+12%), but had lower reproduction (-15%) than "naive" paramecia, indicating an evolutionary trade-off between resistance and fitness. Recovered populations showed similar reproduction to naive populations; however, resistance of recently (<3 years) recovered populations was similar to paramecia from infected populations, whereas longer (>3 years) recovered populations were as susceptible as naive populations. This suggests a weak, convex trade-off between resistance and fitness, allowing recovery of fitness, without complete loss of resistance, favoring the maintenance of a generalist strategy of intermediate fitness and resistance. Our results indicate that (co)evolution with parasites can leave a genetic signature in disease-free populations.  相似文献   

16.
The spread of insecticide resistance in Anopheles mosquitoes and drug resistance in Plasmodium parasites is contributing to a global resurgence of malaria, making the generation of control tools that can overcome these roadblocks an urgent public health priority. We recently showed that the transmission of Plasmodium falciparum parasites can be efficiently blocked when exposing Anopheles gambiae females to antimalarials deposited on a treated surface, with no negative consequences on major components of mosquito fitness. Here, we demonstrate this approach can overcome the hurdles of insecticide resistance in mosquitoes and drug resistant in parasites. We show that the transmission-blocking efficacy of mosquito-targeted antimalarials is maintained when field-derived, insecticide resistant Anopheles are exposed to the potent cytochrome b inhibitor atovaquone, demonstrating that this drug escapes insecticide resistance mechanisms that could potentially interfere with its function. Moreover, this approach prevents transmission of field-derived, artemisinin resistant P. falciparum parasites (Kelch13 C580Y mutant), proving that this strategy could be used to prevent the spread of parasite mutations that induce resistance to front-line antimalarials. Atovaquone is also highly effective at limiting parasite development when ingested by mosquitoes in sugar solutions, including in ongoing infections. These data support the use of mosquito-targeted antimalarials as a promising tool to complement and extend the efficacy of current malaria control interventions.  相似文献   

17.
Variation in susceptibility of the vector Anopheles stephensi Liston to the human malaria parasite Plasmodium falciparum (Welch) was demonstrated using twelve strains of mosquitoes and one strain of parasites cultured in vitro. The Beech strain of An. stephensi exhibited greatest natural refractoriness, but with high intrapopulation variability. By selection for the required characteristic, two refractory lines of the Punjab strain and one highly susceptible line of the Sind strain were obtained. The median number of oocysts in the two refractory lines was less than 4% of that in the unselected line, whilst the highly susceptible line yielded about twice as many oocysts as the unselected line. Selection progressed more by keeping the descendants of individual females separate and selecting between them (individual selection) rather than pooling the progeny of all selected mosquitoes (mass selection). Using the former procedure many lines were lost due to inbreeding depression, but the outcome was more successful.  相似文献   

18.
Costs of resistance are often invoked to explain the maintenance of polymorphisms for resistance to fungal pathogens in natural plant populations. To investigate such costs, 27 half-sib families of Silene alba, collected from a single host population, were grown in experimental populations in the presence and absence of the anther-smut fungus Ustilago violacea, a host-sterilizing pathogen transmitted by insects that are both pollinators and vectors of the disease. Host families differed significantly in resistance to inoculation, indicating the presence of genetic variation for mechanisms that impede fungal growth once the disease is encountered (“biochemical” resistance) within the host population. In addition, host families differed significantly in onset of flowering and in flower production in the absence of the disease. Path analysis revealed that late onset of flowering in male host families made a direct contribution to high field resistance (P < 0.01), probably due to a reduced rate of contact between hosts and vectors carrying high spore loads (avoidance, or “phenological” resistance). The contribution of low flower production to field resistance only approached significance (P < 0.10). There was a significantly positive genetic association between biochemical and phenological resistance, suggesting that delayed flowering is either a pleiotropic effect of biochemical resistance, or that genes governing these traits are in linkage disequilibrium. Path analysis revealed that biochemical resistance made both a direct contribution to field resistance (P < 0.01) and a positive indirect contribution via its association with phenology and flower production (P < 0.05) in male hosts. Costs of resistance were sex specific. Male host families with high field resistance had significantly lower reproductive success in healthy populations, indicating a fitness cost of field resistance (P < 0.01), whereas no costs were detected for female hosts. Path analysis revealed that the biochemical component of field resistance made no direct contribution to the observed fitness cost in male hosts, whereas its indirect effect through phenology was only marginally significant (P < 0.10). This finding indicates that fitness costs were mainly due to the phenological component of field resistance. Because the host population had no known history of disease, it is not clear whether the fitness costs are responsible for maintenance of the resistance polymorphism or whether the polymorphism is present for reasons unrelated to pathogen infection. Interactions between host families and pathogen strains with respect to inoculation success were not significant. Hence, there was no evidence for indirect costs of biochemical resistance, that is, reduced resistance to alternative strains. Infection rates in experimental populations with an initially patchy distribution of the pathogen were lower than in populations with a uniform pathogen distribution, suggesting that the effective pathogen pressure and hence the relative success of susceptible and resistant individuals may, in addition to fitness costs of resistance, depend on the spatial population structure of the pathogen.  相似文献   

19.
Fitness costs associated with insect resistance to Bacillus thuringiensis (Bt) crops may help to delay or prevent the spread of resistance alleles, especially when refuges of non-Bt host plants are present. The potential for such delays increases as the magnitude and dominance of fitness costs increase. Here, we examined the idea that plant secondary chemicals affect expression of fitness costs associated with resistance to Bt cotton in Pectinophora gossypiella (Saunders). Specifically, we tested the hypotheses that gossypol affects the magnitude or dominance of fitness costs, by measuring performance of three independent sets of pink bollworm populations fed artificial diet with and without gossypol. Each set had an unselected susceptible population, a resistant population derived by selection from the susceptible population, and the F1 progeny of the susceptible and resistant populations. No individuals completed development on diets with gossypol in one set, suggesting that these individuals partially lost the ability to detoxify this chemical. In the other two sets, costs affecting survival did not support the hypotheses, but costs affecting pupal weight did. Adding gossypol to diet increased the magnitude and dominance of costs affecting pupal weight. In one of the two sets with survivors on diet with gossypol, costs affecting development time were less recessive when gossypol was present in diet. These results indicate that gossypol increased the magnitude and dominance of some fitness costs. Better understanding of the effects of natural plant defenses on fitness costs could improve our ability to design refuges for managing insect resistance to Bt crops.  相似文献   

20.
Selection in plant parasites for virulence on resistant hosts and the resulting effects on parasite fitness may be considered as a driving force in host-parasite coevolution. In the present study, we tested the hypothesis that a fitness cost may be associated with nematode virulence, using the interaction between the parthenogenetic species Meloidogyne incognita and tomato as a model system. The reproductive parameters of near-isogenic lines of the nematode, selected for avirulence or virulence against the tomato Mi resistance gene, were analysed and combined into a reproductive index that was taken as a measure of fitness. The lower fitness of the virulent lines on the susceptible tomato cultivar showed for the first time that a measurable fitness cost is associated with unnecessary virulence in the nematode. Although parthenogenesis should theoretically lead to little genetic variability, such cost may impose a direct constraint on the coevolution between the plant and the nematode populations, and suggests an adaptive significance of trade-offs between selected characters and fitness-related traits. These results indicate that, although plant resistance can be broken, it might prove durable in some conditions if the virulent nematodes are counterselected in susceptible plants, which could have important consequences for the management of resistant cultivars in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号