首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Approximately 470 strains of various microorganisms were tested for their ability to epoxidize cis-propenylphosphonate (PPOH) to (–)-cis-1,2-epoxypropylphosphonate (fosfomycin, FOM). Cellvibrio gilvus KY 3412 was selected as the best strain. To obtain higher activity, FOM-resistant stains were derived by N-methyl-N-nitro-N-nitroguanidine mutagenesis. Mutant KY 3413, showing ten times higher FOM resistance, was selected. The conditions for the conversion of PPOH to FOM during the cultivation of the mutant were optimized. The addition of both cobalt and vanadium ions to the culture medium greatly stimulated the conversion. Furthermore, when the pH was maintained at pH 8.0 during cultivation, the highest conversion was attained. The molar conversion yield of FOM was inversely dependent on the initial concentration of PPOH, that is, conversions of 100% at less than 0.05% PPOH and of 40% at 0.5% wPOH were attained after 5 days cultivation. Offprint request to: K. Aisaka  相似文献   

2.
Previous studies examining metabolic characteristics of bacterial cultures have mostly suggested that reduced gravity is advantageous for microbial growth. As a consequence, the question of whether space flight would similarly enhance secondary metabolite production was raised. Results from three prior space shuttle experiments indicated that antibiotic production was stimulated in space for two different microbial systems, albeit under suboptimal growth conditions. The goal of this latest experiment was to determine whether the enhanced productivity would also occur with better growth conditions and over longer durations of weightlessness. Microbial antibiotic production was examined onboard the International Space Station during the 72-day 8A increment. Findings of increased productivity of actinomycin D by Streptomyces plicatus in space corroborated with previous findings for the early sample points (days 8 and 12); however, the flight production levels were lower than the matched ground control samples for the remainder of the mission. The overall goal of this research program is to elucidate the specific mechanisms responsible for the initial stimulation of productivity in space and translate this knowledge into methods for improving efficiency of commercial production facilities on Earth.  相似文献   

3.
We present here the crystal structures of fosfomycin resistance protein (FomA) complexed with MgATP, with ATP and fosfomycin, with MgADP and fosfomycin vanadate, with MgADP and the product of the enzymatic reaction, fosfomycin monophosphate, and with ADP at 1.87, 1.58, 1.85, 1.57, and 1.85 ? resolution, respectively. Structures of these complexes that approximate different reaction steps allowed us to distinguish the catalytically active conformation of ATP and to reconstruct the model of the MgATP·fosfomycin complex. According to the model, the triphosphate tail of the nucleotide is aligned toward the phosphonate moiety of fosfomycin, in contest to the previously published MgAMPPNP complex, with the attacking fosfomycin oxygen positioned 4 ? from the γ-phosphorus of ATP. Site-directed mutagenesis studies and comparison of these structures with that of homologous N-acetyl-l-glutamate and isopentenyl phosphate kinases allowed us to propose a model of phosphorylation of fosfomycin by FomA enzyme. A Mg cation ligates all three phosphate groups of ATP and together with positively charged K216, K9, K18, and H58 participates in the dissipation of negative charge during phosphoryl transfer, indicating that the transferred phosphate group is highly negatively charged, which would be expected for an associative mechanism. K216 polarizes the γ-phosphoryl group of ATP. K9, K18, and H58 participate in stabilization of the transition state. D150 and D208 play organizational roles in catalysis. S148, S149, and T210 participate in fosfomycin binding, with T210 being crucial for catalysis. Hence, it appears that as in the homologous enzymes, FomA-catalyzed phosphoryl transfer takes place by an in-line predominantly associative mechanism.  相似文献   

4.
The ability to produce (R)- or (S)-beta-phenylalanine from racemic beta-phenylalanine through stereoselective degradation was screened for. Variovorax sp. JH2 and Arthrobacter sp. the faculty of Agriculture, Kyoto University (AKU) 638 were found to be potential catalysts for (R)- and (S)-beta-phenylalanine production respectively. On 192 h cultivation of Variovorax sp. in medium containing 1.0% (w/v) racemic beta-phenylalanine, 0.46% (w/v) (R)-beta-phenylalanine with an enantiomeric purity of 99% e.e. was obtained. The initial step of the (S)-isomer degradation was stereoselective transamination. On 312 h cultivation of Arthrobacter sp. in medium containing 1.0% (w/v) racemic beta-phenylalanine, 0.51% (w/v) (R)-beta-phenylalanine with an enantiomeric purity of 90% e.e. was obtained. The initial step of the (R)-isomer degradation was supposed to be oxidative deamination. Resting cell reaction with vigorous shaking, with cells of Arthrobacter sp. as the catalyst, resulted in production of 0.49% (w/v) of (S)-beta-phenylalanine with an enantiomeric purity of 99% e.e. from 1.0% (w/v) racemic beta-phenylalanine in 45 h.  相似文献   

5.
This short review covers metabolic pathways, genetics and metabolic engineering of 1,2-propanediol formation in microbes. 1,2-Propanediol production by bacteria and yeasts has been known for many years and two general pathways are recognized. One involves the metabolism of deoxyhexoses, where lactaldehyde is formed during the glycolytic reactions and is then reduced to 1,2-propanediol. The second pathway derives from the formation of methylglyoxal from dihydroxyacetonephosphate and its subsequent reduction to 1,2-propanediol. The enzymes involved in the reduction of methylglyoxal can generate isomers of lactaldehyde or acetol, which can be further reduced by specific reductases, giving chiral 1,2-propanediol as the product. The stereospecificity of the enzymes catalyzing the two reduction steps is important in deriving a complete pathway. Through genetic engineering, appropriate combinations of enzymes have been brought together in Escherichia coli and yeast to generate 1,2-propanediol from glucose. The optimization of these strains may yield microbial processes for the production of this widely used chemical. Received: 25 May 2000 / Received revision: 24 July 2000 / Accepted: 25 July 2000  相似文献   

6.
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.  相似文献   

7.
Trans-4-acetylaminostilbene is activated by liver preparations to mutagens for Salmonella typhimurium. Since this compound is metabolized to the trans-alpha,beta-epoxide and since many epoxides are ultimate mutagens, this epoxide was tested for direct mutagenicity. It was, however, found to be non-mutagenic, and, in contrast to the parent compound, the epoxide was no longer activated by liver preparations to mutagens. The same was found for the beta-ketone and for the threo-alpha,beta-dihydrodiol, which are formed metabolically from trans-4-acetylaminostilbene and from its alpha,beta-epoxide. 4-Acetylaminobibenzyl showed a very weak mutagenic activity in the presence of the liver preparation. Thus, it is important to realize that where epoxides are formed from compounds which are known to be metabolized to mutagens, they are not necessarily responsible for the mutagenicity. Epoxidation may even prevent the possibility of bioactivation to mutagens.  相似文献   

8.
9.
A procedure for protoplasts formation from Escherichia coli and Serratia marcescens by treatment with fosfomycin alone is described. This method gives high and low yields of stable protoplasts from E. coli and S. marcescens respectively. In the last case numerous spheroplasts were obtained. Electron micrographs of intact cells, protoplasts and spheroplasts are shown.  相似文献   

10.
Thermomonospora sp. T-SA-125 is a true thermophilic actinomycete isolated from a soil sample collected from the Saudi Arabian desert. It is characterized by the formation of single spores at the tips of dichotomously branched aerial mycelium and differs from Thermomonospora curvata and T. viridis in certain aspects. It produces a basic water-soluble antibiotic which is active against Gram-positive bacteria, moderately active against Gram-negative bacteria and inactive against fungi. At high concentrations, this antibiotic, stimulated the growth of both Hordeum coleoptile and lettuce hypocotyl.  相似文献   

11.
Human CYP3A4 catalyzes the 10,11-epoxidation of carbamazepine (CBZ). However, the epoxide is less stable in terms of potential energy than hydroxides of the six-membered aromatic ring. To clarify the reason why CYP3A4 produces such an energetically unfavorable compound, the mechanism of epoxidation of CBZ by CYP3A4 was investigated by theoretical calculations. The reaction consisted of two elementary processes in which two C–O bonds were generated stepwise. The rate-determining step was the first one and the activation energy was 21.3 kcal/mol at the DFT (B3LYP/6-31G**) level. The activation energy level of the first step of the 10,11-epoxidation was lower than that of the hydroxylation of the aromatic ring. For this reason, 10,11-epoxidation is more probable than hydroxylation of the aromatic ring, and only 10,11-epoxide is formed.  相似文献   

12.
ε-聚赖氨酸是由L-赖氨酸α-COOH和ε-NH2 缩合而成,由微生物合成的一种同型氨基酸聚合物.ε-聚赖氨酸是一种优良的生物防腐剂,对G+、G-、酵母菌和霉菌都有较好的抑菌效果.本文综述了ε-聚赖氨酸的来源与性质、产生菌的筛选与改造、发酵过程优化与调控、ε-聚赖氨酸分解酶、ε-聚赖氨酸合成机理和ε-聚赖氨酸酯化结构与...  相似文献   

13.
An adsorptive process was combined with yeast-mediated production of chiral 2-chloro-alpha-methylbenzyl alcohol (o-Cl-1-PA) for effective product recovery and reuse of the reaction medium. Low temperature was suitable for long-term reactor operation, and continuous production using a shallow-bed reactor was achieved for at least 22 days while maintaining a high conversion. The appropriate size of the adsorption column for product recovery from the reactor effluent was estimated through measurement of breakthrough curves of o-Cl-1-PA in a packed bed of the resin at various adsorbate concentrations and feed flow rates. Using the adsorption column, 98% of the product and the residual substrate were recovered from the reactor effluent, and the effluent from the adsorption column was successfully reused as the reaction medium after microfiltration to save the medium consumption.  相似文献   

14.
Microbial phenotypic heterogeneity and antibiotic tolerance   总被引:1,自引:0,他引:1  
Phenotypic heterogeneity, defined as metastable variation in cellular parameters generated by epigenetic mechanisms, is crucial for the persistence of bacterial populations under fluctuating selective pressures. Diversity ensures that some individuals will survive a potentially lethal stress, such as an antibiotic, that would otherwise obliterate the entire population. The refractoriness of bacterial infections to antibiotic therapy has been ascribed to antibiotic-tolerant variants known as 'persisters'. The persisters are not drug-resistant mutants and it is unclear why they survive antibiotic pressure that kills their genetically identical siblings. Recent conceptual and technological advances are beginning to yield some surprising new insights into the mechanistic basis of this clinically important manifestation of phenotypic heterogeneity.  相似文献   

15.
Microbial transformation studies on 2beta-angeloyloxy-5beta,8beta-dihydroxypresilphiperfolane have revealed that it was metabolized by a number of microorganisms. Using a standard two-stage fermentation technique, Mucor ramannianus (ATCC 9628) produced three metabolites. One of them was characterized as the novel metabolite (2'R,3'R)-(+)-2beta-(2',3'-epoxyangeloyloxy)-5beta,8beta-dihydroxypresilphiperfolane on the basis of spectral data. The absolute configuration at both oxirane carbons was confirmed by spectral and optical activity data of the hydrolysis product of the novel metabolite which is (2R,3R)-(+)-2,3-epoxyangelic acid.  相似文献   

16.
D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review.  相似文献   

17.
[RuIV(tpy)(pic)(O)]+ (1) was synthesized by chemical oxidation of the corresponding aqua-complex [RuII(tpy)(pic)(H2O)]+ (2) and characterized by analytical, spectroscopic (UV-vis and IR) and magnetic moment studies. Complex 1 effected epoxidation of styrene and substituted styrenes, cis- and trans-stilbenes and cyclohexene, in CH3CN at room temperature. Epoxides were found to be the major product for styrenes and stilbenes, whereas, the oxidation of cyclohexene yielded allylic oxidation product. Detailed kinetic studies were performed under pseudo-first order conditions of excess alkene concentrations. A working mechanism in agreement with the rate and activation parameters is presented, and the results are discussed in reference to the data reported for the alkene oxidation by relevant RuIVO system in CH3CN.  相似文献   

18.
The formation of S-nitrosohemoglobin (SNOHb) in red cells has been a major point of contention among researchers in this field. We have delineated a new mechanism for the formation of SNOHb coupled to nitrite reduction by deoxygenated hemoglobin chains at low oxygen pressures. The establishment of this mechanism required the development of a chemiluminescence assay utilizing Cu(II) and ascorbic acid to directly measure nitrosothiols without any interference from nitrite or heme-NO. The formation of SNOHb was shown to involve a dominant nitrite-reduction intermediate with electron delocalized between the heme iron and the bound NO. The possible mechanisms for the formation of SNOHb from this intermediate in the absence of oxygen are discussed including the role for an expansion of the electron delocalized intermediate to include the beta-93 cysteine residue. This extended delocalization was supported by a direct reaction with unbound NO, simultaneously producing SNOHb and Hb(II)NO, when NO reacts with metHb. The SNOHb found in red cells in vivo can, thus, be explained as originating from nitrite reduction that takes place at reduced oxygen pressures.  相似文献   

19.
细菌素是一类由微生物产生的具有抑菌活性的多肽或前体多肽类物质。本文主要介绍了细菌素的概念、分类、作用机制,细菌素与抗生素的区别及在生产中的应用。同时阐述了细菌素潜在应用价值。  相似文献   

20.
Yan F  Munos JW  Liu P  Liu HW 《Biochemistry》2006,45(38):11473-11481
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) catalyzes the epoxide ring closure of (S)-HPP to form fosfomycin, a clinically useful antibiotic. Early investigation showed that its activity can be reconstituted with Fe(II), FMN, NADH, and O2 and identified HppE as a new type of mononuclear non-heme iron-dependent oxygenase involving high-valent iron-oxo species in the catalysis. However, a recent study showed that the Zn(II)-reconstituted HppE is active, and HppE exhibits modest affinity for FMN. Thus, a new mechanism is proposed in which the active site-bound Fe2+ or Zn2+ serves as a Lewis acid to activate the 2-OH group of (S)-HPP and the epoxide ring is formed by the attack of the 2-OH group at C-1 coupled with the transfer of the C-1 hydrogen as a hydride ion to the bound FMN. To distinguish between these mechanistic discrepancies, we re-examined the bioautography assay, the basis for the alternative mechanism, and showed that Zn(II) cannot replace Fe(II) in the HppE reaction and NADH is indispensable. Moreover, we demonstrated that the proposed role for FMN as a hydride acceptor is inconsistent with the finding that FMN cannot bind to HppE in the presence of substrate. In addition, using a newly developed HPLC assay, we showed that several non-flavin electron mediators could replace FMN in the HppE-catalyzed epoxidation. Taken together, these results do not support the newly proposed "nucleophilic displacement-hydride transfer" mechanism but are fully consistent with the previously proposed iron-redox mechanism for HppE catalysis, which is unique within the mononuclear non-heme iron enzyme superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号