首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1997,186(1):119-125
We have identified a novel protein kinase encoded by the misshapen gene, which is required for the normal shape and orientation of Drosophila photoreceptor cells. misshapen is also expressed in the embryonic mesoderm, pole plasm and other sites of cell shape change or movement. We propose that msn may act in a signal transduction pathway leading to cytoskeletal re-arrangements.  相似文献   

2.
3.
We previously described the isolation of mutants of the methylotrophic yeast Hansenula polymorpha that are defective in peroxisome biogenesis. Here, we describe the characterization of one of these mutants, per8, and the cloning of the PER8 gene. In either methanol or methylamine medium, conditions that normally induce the organelles, per8 cells contain no peroxisome-like structures and peroxisomal enzymes are located in the cytosol. The sequence of PER8 predicts that its product (Per8p) is a novel polypeptide of 34 kD, and antibodies against Per8p recognize a protein of 31 kD. Analysis of the primary sequence of Per8p revealed a 39-amino-acid cysteine-rich segment with similarity to the C3HC4 family of zinc-finger motifs. Overexpression of PER8 results in a markedly enhanced increase in peroxisome numbers. We show that Per8p is an integral membrane protein of the peroxisome and that it is concentrated in the membranes of newly formed organelles. We propose that Per8p is a component of the molecular machinery that controls the proliferation of this organelle.  相似文献   

4.
5.
RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.  相似文献   

6.
7.
8.
The ANGUSTIFOLIA (AN) gene is required for leaf hair (trichome) branching and is also involved in polarized expansion underlying organ shape. Here we show that the AN gene encodes a C-terminal binding proteins/brefeldin A ADP-ribosylated substrates (CtBP/BARS) related protein. AN is expressed at low levels in all organs and the AN protein is localized in the cytoplasm. In an mutant trichomes, the organization of the actin cytoskeleton is normal but the distribution of microtubules is aberrant. A role of AN in the control of the microtubule cytoskeleton is further supported by the finding that AN genetically and physically interacts with ZWICHEL, a kinesin motor molecule involved in trichome branching. Our data suggest that CtBP/BARS-like protein function in plants is directly associated with the microtubule cytoskeleton.  相似文献   

9.
Dawe S  Duncan R 《Journal of virology》2002,76(5):2131-2140
We demonstrate that the S4 genome segment of baboon reovirus (BRV) contains two sequential partially overlapping open reading frames (ORFs), both of which are functional in vitro and in virus-infected cells. The 15-kDa gene product (p15) of the 5"-proximal ORF induces efficient cell-cell fusion when expressed by itself in transfected cells, suggesting that p15 is the only viral protein required for induction of syncytium formation by BRV. The p15 protein is a small, hydrophobic, basic, integral membrane protein, properties shared with the p10 fusion-associated small transmembrane (FAST) proteins encoded by avian reovirus and Nelson Bay reovirus. As with p10, the BRV p15 protein is also a nonstructural protein and, therefore, is not involved in virus entry. Sequence analysis indicates that p15 shares no significant sequence similarity with the p10 FAST proteins and contains a unique repertoire and arrangement of sequence-predicted structural and functional motifs. These motifs include a functional N-terminal myristylation consensus sequence, an N-proximal proline-rich motif, two potential transmembrane domains, and an intervening polybasic region. The unique structural properties of p15 suggest that this protein is a novel member of the new family of FAST proteins.  相似文献   

10.
Autocrine motility factor receptor (AMFR) is a cell surface glycoprotein of molecular weight 78,000 (gp78), mediating cell motility signaling in vitro and metastasis in vivo. Here, we cloned the full-length cDNAs for both human and mouse AMFR genes. Both genes encode a protein of 643 amino acids containing a seven transmembrane domain, a RING-H2 motif and a leucine zipper motif and showed a 94.7% amino acid sequence identity to each other. Analysis of the amino acid sequence of AMFR with protein databases revealed no significant homology with all known seven transmembrane proteins, but a significant structural similarity to a hypothetical protein of Caenorhabditis elegans, F26E4.11. Thus, AMFR is a highly conserved gene which encodes a novel type of seven transmembrane protein.  相似文献   

11.
During the development of an organism, cell proliferation, differentiation and cell death are tightly balanced, and are controlled by a number of different regulators. Alterations in this balance are often observed in a variety of human diseases. The role of Ca(2+) as one of the key regulators of the cell is discussed with respect to a recently discovered Ca(2+)-binding protein, ALG-2, which is highly upregulated in cancerous tissues of different origins. The role of ALG-2 as a possible clinical marker and, molecularly, as a possible modulator at the interface between cell proliferation and cell death is discussed.  相似文献   

12.
The tapered sensory rays of the male Caenorhabditis elegans are important for successful male/hermaphrodite copulation. A group of ram (ray morphology abnormal) genes encoding modifying enzymes and transmembrane protein have been reported as key regulators controlling ray morphogenesis. Here we report the characterization of another component essential for this morphogenetic process encoded by mab-7. This gene is active in the hypodermis, structural cells, the body seam and several head neurons. It encodes a novel protein with a hydrophobic region at the N-terminus, an EGF-like motif, an ShKT motif and a long C-terminal tail. All these domains are shown to be critical to MAB-7 activity except the EGF-like domain, which appears to be regulatory and dispensable. MAB-7 is shown to be a type II membrane protein, tethered on the cell surface by the N-terminal transmembrane domain with the remainder of the protein exposed to the extracellular matrix. Since ectopic mab-7 expression in any ray cell or even in touch neurons of non-ray lineage can rescue the mutant phenotype, mab-7 is probably acting non-autonomously. It may facilitate intercellular communication among ray cells to augment normal ray morphogenesis.  相似文献   

13.
Galectin-3 internal gene (Galig) was recently identified as an internal gene transcribed from the second intron of the human galectin-3 gene that is implicated in cell growth, cell differentiation, and cancer development. In this study, we show that galig expression causes morphological alterations in human cells, such as cell shrinkage, cytoplasm vacuolization, nuclei condensation, and ultimately cell death. These alterations were associated with extramitochondrial release of cytochrome c, a known cell death effector. Furthermore, Bcl-xL co-transfection significantly reduced the release of cytochrome c induced by galig expression, suggesting a common pathway between the cytotoxic activity of galig and the anti-apoptotic activity of Bcl-xL. This antagonism was not observed upon co-transfection of Bcl-2 and galig. Galig encodes a mitochondrial-targeted protein named mitogaligin. Structure-activity relationship studies showed that the mitochondrial addressing of mitogaligin relies on an internal sequence that is required and sufficient for the release of cytochrome c and cell death upon cell transfection. Moreover, incubation of isolated mitochondria with peptides derived from mitogaligin induces cytochrome c release. Altogether, these results show that galig is a novel cell death gene encoding mitogaligin, a protein promoting cytochrome c release upon direct interaction with the mitochondria.  相似文献   

14.
Cereal seed development depends on the intimate interaction of filial and maternal tissues, ensuring nourishment of the new generation. The gene jekyll, which was identified in barley (Hordeum vulgare), is preferentially expressed in the nurse tissues. JEKYLL shares partial similarity with the scorpion Cn4 toxin and is toxic when ectopically expressed in Escherichia coli and tobacco (Nicotiana tabacum). In barley, jekyll is upregulated in cells destined for autolysis. The gene generates a gradient of expression in the nucellar projection, which mediates the maternal-filial interaction during seed filling. Downregulation of jekyll by the RNA interference technique in barley decelerates autolysis and cell differentiation within the nurse tissues. Flower development and seed filling are thereby extended, and the nucellar projection no longer functions as the main transport route for assimilates. A slowing down in the proliferation of endosperm nuclei and a severely impaired ability to accumulate starch in the endosperm leads to the formation of irregular and small-sized seeds at maturity. Overall, JEKYLL plays a decisive role in the differentiation of the nucellar projection and drives the programmed cell death necessary for its proper function. We further suggest that cell autolysis during the differentiation of the nucellar projection allows the optimal provision of basic nutrients for biosynthesis in endosperm and embryo.  相似文献   

15.
《Gene》1997,203(2):89-93
Recent studies in yeast, Drosophila and humans have revealed the existence of a highly conserved gene encoding a novel protein, Dodo, comprised of four modules: a WW domain, involved in protein–protein interactions, a peptidyl–prolyl cis–trans isomerase (PPIase) domain belonging to a recently described third family of PPIases involved in protein folding and unfolding, a nuclear localization motif and finally, a long, surface-exposed α-helix that is likely to be involved in binding to a cell cycle serine/threonine kinase. The genetic, molecular, biochemical and structural data are reviewed in the context of the potential biological properties of this new protein family.  相似文献   

16.
H Vaessin  E Grell  E Wolff  E Bier  L Y Jan  Y N Jan 《Cell》1991,67(5):941-953
Neurogenesis in Drosophila begins with the formation of neuronal precursors, which give rise to neurons of individual identity. To find out whether there are genes that are expressed in most or all neuronal precursors and are involved in controlling particular aspects of neuronal differentiation, we used the enhancer-trap method to screen for such "neuronal precursor genes." One gene of this group is prospero. Our mutant analysis indicates that prospero regulates other neuronal precursor genes and is essential for the axonal outgrowth and pathfinding of numerous central and peripheral neurons. prospero encodes a large nuclear protein with multiple homopolymeric amino acid stretches and is expressed in neuronal precursors early during their formation. It is probably generally required for proper neuronal differentiation.  相似文献   

17.
Carbon is partitioned between export from the leaf and retention within the leaf, and this process is essential for all aspects of plant growth and development. In most plants, sucrose is loaded into the phloem of carbon-exporting leaves (sources), transported through the veins, and unloaded into carbon-importing tissues (sinks). We have taken a genetic approach to identify genes regulating carbon partitioning in maize (Zea mays). We identified a collection of mutants, called the tie-dyed (tdy) loci, that hyperaccumulate carbohydrates in regions of their leaves. To understand the molecular function of Tdy1, we cloned the gene. Tdy1 encodes a novel transmembrane protein present only in grasses, although two protein domains are conserved across angiosperms. We found that Tdy1 is expressed exclusively in phloem cells of both source and sink tissues, suggesting that Tdy1 may play a role in phloem loading and unloading processes. In addition, Tdy1 RNA accumulates in protophloem cells upon differentiation, suggesting that Tdy1 may function as soon as phloem cells become competent to transport assimilates. Monitoring the movement of a fluorescent, soluble dye showed that tdy1 leaves have retarded phloem loading. However, once the dye entered into the phloem, solute transport appeared equal in wild-type and tdy1 mutant plants, suggesting that tdy1 plants are not defective in phloem unloading. Therefore, even though Tdy1 RNA accumulates in source and sink tissues, we propose that TDY1 functions in carbon partitioning by promoting phloem loading. Possible roles for TDY1 are discussed.  相似文献   

18.
The pasticcino2 (pas2) mutant shows impaired embryo and seedling development associated with cell de-differentiation and proliferation. This process is specifically enhanced in presence of cytokinins leading to callus-like structure of the apical part of the seedling. Cell proliferation concerns localized and stochastic nodules of dividing cells. In absence of cytokinins, cell proliferation leads to small calli on stems but, most often, cell proliferation is associated with post-genital organ fusion. The PAS2 gene was identified by positional cloning. PAS2 expression was found in every plant organ and was not regulated by PAS1 and PAS3 genes. PAS2 encodes the Arabidopsis member of the protein tyrosine phosphatase-like (Ptpl) family, a new PTP family originally described in mice and humans and characterized by a mutated PTP active site. This family of proteins has a yeast homolog that is essential for cell viability. The absence of yeast PAS2 homolog can be functionally replaced by the Arabidopsis PAS2 protein, demonstrating that PAS2 function is conserved between higher and lower eukaryotes.  相似文献   

19.
Gonad formation requires specific interactions between germ cells and specialized somatic cells, along with the elaborate morphogenetic movements of these cells to create an ovary or testis. We have identified mutations in the fear of intimacy (foi) gene that cause defects in the formation of the embryonic gonad in DROSOPHILA: foi is of particular interest because it affects gonad formation without affecting gonad cell identity, and is therefore specifically required for the morphogenesis of this organ. foi is also required for tracheal branch fusion during tracheal development. E-cadherin/shotgun is similarly required for both gonad coalescence and tracheal branch fusion, suggesting that E-cadherin and FOI cooperate to mediate these processes. foi encodes a member of a novel family of transmembrane proteins that includes the closely related human protein LIV1. Our findings that FOI is a cell-surface protein required in the mesoderm for gonad morphogenesis shed light on the function of this new family of proteins and on the molecular mechanisms of organogenesis.  相似文献   

20.
Calmodulin is involved in regulation of cell proliferation.   总被引:16,自引:4,他引:16       下载免费PDF全文
A chicken calmodulin (CaM) gene has been expressed in mouse C127 cells using a bovine papilloma virus (BPV)-based vector (BPV-CM). The vector-borne genes produce a mature mRNA of the expected size that is present on cytoplasmic polyribosomes. In clonal cell lines transformed by BPV-CM, expression of the CaM gene produced CaM levels 2- to 4-fold above those observed in cells transformed by BPV alone. Increased intracellular CaM caused a reduction of cell cycle length that is solely due to a reduction in the length of the G1 phase. A comparison of six cell lines revealed a linear relationship between the intracellular CaM concentration and the rate of G1 progression. These data provide the first evidence that specific elevation of CaM levels directly affects the rate of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号