首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DFT calculations on the relative stability of various nucleobase radicals induced by e(aq)(-) and (*)OH have been carried out for assessing the energetics of rearrangements and water elimination reactions, taking the solvent effect of water into account. Uracil and thymine radical anions are protonated fast at O2 and O4, whereby the O2-protonated anions are higher in energy (50 kJ mol(-1), equivalent to a 9-unit lower pK(a)). The experimentally observed pK(a)=7 is thus that of the O4-protonated species. Thermodynamically favored protonation occurs slowly at C6 (driving force, thymine: 49 kJ mol(-1), uracil: 29 kJ mol(-1)). The cytosine radical anion is rapidly protonated by water at N3. Final protonation at C6 is disfavored here. The kinetically favored pyrimidine C5 (*)OH adducts rearrange into the thermodynamically favored C6 (*)OH adducts (driving force, thymine: 42 kJ mol(-1)). Very similar in energy is a water elimination that leads to the Ura-5-methyl radical. Purine (*)OH adducts at C4 and C5 (plus C2 in guanine) eliminate water in exothermic reactions, while water elimination from the C8 (*)OH adducts is endothermic. The latter open the ring en route to the FAPY products, an H transfer from the C8(*)OH to N9 being the most likely process.  相似文献   

2.
The ability of ten imidazolyl nitrones to directly scavenge free radicals (R(*)) generated in polar ((*)OH, O(*)(2)(-), SO(*)(3)(-) cysteinyl, (*)CH(3)) or in apolar (CH(3)-(*)CH-CH(3)) media has been studied. When oxygen or sulfur-centered radicals are generated in polar media, EPR spectra are not or weakly observed with simple spectral features. Strong line intensities and more complicated spectra are observed with the isopropyl radical generated in an apolar medium. Intermediate results are obtained with (*)CH(3) generated in a polar medium. EPR demonstrates the ability of these nitrones to trap radicals to the nitrone C(alpha) atom (alpha radical adduct) and to the imidazol C(5) atom (5-radical adduct). Beside the nucleophilic addition of the radical to the C(alpha) atom, the EPR studies suggest a two-step mechanism for the overall reaction of R(*) attacking the imidazol core. The two steps seem to occur very fast with the (*)OH radical obtained in a polar medium and slower with the isopropyl radical prepared in benzene. In conclusion, imidazolyl nitrones present a high capacity to trap and stabilize carbon-centered radicals.  相似文献   

3.
In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.  相似文献   

4.
The carbonate radical anion (CO(3)) is believed to be an important intermediate oxidant derived from the oxidation of bicarbonate anions and nitrosoperoxocarboxylate anions (formed in the reaction of CO(2) with ONOO(-)) in cellular environments. Employing nanosecond laser flash photolysis methods, we show that the CO(3) anion can selectively oxidize guanines in the self-complementary oligonucleotide duplex d(AACGCGAATTCGCGTT) dissolved in air-equilibrated aqueous buffer solution (pH 7.5). In these time-resolved transient absorbance experiments, the CO(3) radicals are generated by one-electron oxidation of the bicarbonate anions (HCO(3)(-)) with sulfate radical anions (SO(4)) that, in turn, are derived from the photodissociation of persulfate anions (S(2)O(8)(2-)) initiated by 308-nm XeCl excimer laser pulse excitation. The kinetics of the CO(3) anion and neutral guanine radicals, G(-H)( small middle dot), arising from the rapid deprotonation of the guanine radical cation, are monitored via their transient absorption spectra (characteristic maxima at 600 and 315 nm, respectively) on time scales of microseconds to seconds. The bimolecular rate constant of oxidation of guanine in this oligonucleotide duplex by CO(3) is (1.9 +/- 0.2) x 10(7) m(-1) s(-1). The decay of the CO(3) anions and the formation of G(-H)( small middle dot) radicals are correlated with one another on the millisecond time scale, whereas the neutral guanine radicals decay on time scales of seconds. Alkali-labile guanine lesions are produced and are revealed by treatment of the irradiated oligonucleotides in hot piperidine solution. The DNA fragments thus formed are identified by a standard polyacrylamide gel electrophoresis assay, showing that strand cleavage occurs at the guanine sites only. The biological implications of these oxidative processes are discussed.  相似文献   

5.
Heo J  Campbell SL 《Biochemistry》2006,45(7):2200-2210
Ras GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. We have previously shown that both NO/O(2) (via nitrogen dioxide, (*)NO(2)) and superoxide radical anion (O(2)(*)(-)) promote Ras guanine nucleotide dissociation. We now show that hydrogen peroxide in the presence of transition metals (i.e., H(2)O(2)/transition metals) and peroxynitrite also trigger radical-based Ras guanine nucleotide dissociation. The primary redox-active reaction species derived from H(2)O(2)/transition metals and peroxynitrite is O(2)(*)(-) and (*)NO(2), respectively. A small fraction of hydroxyl radical (OH(*)) is also present in both. We also show that both carbonate radical (CO(3)(*)(-)) and (*)NO(2), derived from the mixture of peroxynitrite and bicarbonate, facilitate Ras guanine nucleotide dissociation. We further demonstrate that NO/O(2) and O(2)(*)(-) promote Ras GDP exchange with GTP in the presence of a radical-quenching agent, ascorbate, or NO, and generation of Ras-GTP promotes high-affinity binding of the Ras-binding domain of Raf-1, a downstream effector of Ras. S-Nitrosylated Ras (Ras-SNO) can be formed when NO serves as a radical-quenching agent, and hydroxyl radical but not (*)NO(2) or O(2)(*)(-) can further react with Ras-SNO to modulate Ras activity in vitro. However, given the lack of redox specificity associated with the high redox potential of OH(*), it is unclear whether this reaction occurs under physiological conditions.  相似文献   

6.
PURPOSE: To investigate the importance of two possible mechanisms of tyrosine oxidation on the yield of protein dimerization. The model chosen is hen and turkey egg-white lysozymes, which differ by seven amino acids, among which one tyrosine is in the 3 position. MATERIALS AND METHODS: Aqueous solutions of proteins were oxidized by OH(*) or N(*)(3) free radicals produced by gamma or pulse irradiation in an atmosphere of N(2)O. Protein dimers were quantified by SDS-PAGE and reverse-phase HPLC. Dityrosines were identified by absorption and fluorescence. RESULTS: Using N(*)(3) free radicals, the initial yields of dimerization are equal to (8.6 +/- 0.7) x 10(-9) mol J(-1) for both proteins. Using OH(*) free radicals, they become equal to (1.23 +/- 0.1) x 10(-8) and (4.42 +/- 0.1) x 10(-8) mol J(-1) for hen and turkey egg-white lysozymes, respectively (gamma radiolysis). DISCUSSION. N(*)(3) radicals react primarily with tryptophan residues only. Tyrosine gets oxidized by intramolecular long-range electron migration, whereas OH(*) may react directly with tyrosines. We propose a low participation of Tyr3 in turkey protein in the intramolecular process, because Tyr3 is far from all tryptophans. On the other hand, Tyr3 is very accessible to solvent and in a flexible area; thus collisions with OH(*) could easily be followed by intermolecular dimerization.  相似文献   

7.
The repair of the one electron oxidised form of a xanthine derivative by another xanthine derivative was studied by reacting aqueous binary mixtures of xanthine derivatives with sulphate radical anion (SO(4)( -)) and following the concentration of both compounds as a function of time. The relative behaviour observed enabled the establishment of a qualitative order of antioxidant capacities for the several xanthines studied in acidic and neutral media. The same order was confirmed quantitatively by measuring the reduction potentials of the xanthines by cyclic voltammetry. Theoretical DFT calculations were used to calculate the relative stabilities of the tautomers of each xanthine neutral radical. It was also demonstrated that the deprotonation of a xanthine radical cation never occurs from N1, unless no other possibility is available. At high pH values, it was possible to obtain the ESR spectra of the radical anions derived from 1-methylxanthine, 3-methylxanthine and xanthosine. The theoretical calculations also enabled the assignment of the ESR hyperfine coupling constants of the spectra of these radical anions. The coupling constants calculated are in good agreement with the experimental values.  相似文献   

8.
Free radical intermediates were detected by the electron paramagnetic resonance spin trapping technique upon protonation/deprotonation reactions of carotenoid and beta-ionone radical ions. The hyperfine coupling constants of their spin adducts obtained by spectral simulation indicate that carbon-centered radicals were trapped. The formation of these species was shown to be a result of chemical oxidation of neutral compounds by Fe(3+) or I(2) followed by deprotonation of the corresponding radical cations or addition of nucleophilic agents to them. Bulk electrolysis reduction of beta-ionone and carotenoids also leads to the formation of free radicals via protonation of the radical anions. Two different spin adducts were detected in the reaction of carotenoid polyenes with piperidine in the presence of 2-methyl-2-nitroso-propane (MNP). One is attributable to piperidine radicals (C(5)H(10)N*) trapped by MNP and the other was identified as trapped neutral carotenoid (beta-ionone) radical produced via protonation of the radical anion. Formation of these radical anions was confirmed by ultraviolet-visible spectroscopy. It was found that the ability of carotenoid radical anions/cations to produce neutral radicals via protonation/deprotonation is more pronounced for unsymmetrical carotenoids with terminal electron-withdrawing groups. This effect was confirmed by the radical cation deprotonation energy (H(D)) estimated by semiempirical calculations. The results indicate that the ability of carotenoid radical cations to deprotonate decreases in the sequence: beta-ionone > unsymmetrical carotenoids > symmetrical carotenoids. The minimum H(D) values were obtained for proton abstraction from the C(4) atom and the C(5)-methyl group of the cyclohexene ring. It was assumed that deprotonation reaction occurs preferentially at these positions.  相似文献   

9.
By the observation of chemically induced dynamic nuclear polarization in (15)N NMR spectroscopy it has been shown that nitration of N-acetyltyrosine, even under acidic conditions, is largely a radical process. In the alkaline reaction of tyrosine with peroxynitrite the main products are nitrite and nitrate, both produced by a radical pathway, and tyrosine nitration is a minor reaction. It is suggested that tyrosine catalyzes the production of NO(*)(2) and HO(*) from peroxynitrite.  相似文献   

10.
The gene-3 protein (G3P) of filamentous phages is essential for the infection of Escherichia coli. The carboxy-terminal domain anchors this protein in the phage coat, whereas the two amino-terminal domains N1 and N2 protrude from the phage surface. We analyzed the folding mechanism of the two-domain fragment N1-N2 of G3P (G3P(*)) and the interplay between folding and domain assembly. For this analysis, a variant of G3P(*) was used that contained four stabilizing mutations (IIHY-G3P(*)). The observed refolding kinetics extend from 10 ms to several hours. Domain N1 refolds very rapidly (with a time constant of 9.4 ms at 0.5 M guanidinium chloride, 25 degrees C) both as a part of IIHY-G3P(*) and as an isolated protein fragment. The refolding of domain N2 is slower and involves two reactions with time constants of seven seconds and 42 seconds. These folding reactions of the individual domains are followed by a very slow, spectroscopically silent docking process, which shows a time constant of 6200 seconds. This reaction was detected by a kinetic unfolding assay for native molecules. Before docking, N1 and N2 unfold fast and independently, after docking they unfold slowly in a correlated fashion. A high energy barrier is thus created by domain docking, which protects G3P kinetically against unfolding. The slow domain docking is possibly important for the infection of E.coli by the phage. Upon binding to the F pilus, the N2 domain separates from N1 and the binding site for TolA on domain N1 is exposed. Since domain reassembly is so slow, this binding site remains accessible until pilus retraction has brought N1 close to TolA on the bacterial surface.  相似文献   

11.
One-electron oxidation of (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) by the azide radical generates the radical cation (H(4)B(*)(+)) which rapidly deprotonates at physiological pH to give the neutral trihydrobiopterin radical (H(3)B(*)); pK(a) (H(4)B(*)(+) <==> H(3)B(*) + H(+)) = (5.2 +/- 0.1). In the absence of ascorbate both the H(4)B(*)(+) and H(3)B(*) radicals undergo disproportionation to form quinonoid dihydrobiopterin (qH(2)B) and the parent H(4)B with rate constants k(H(4)B(*)(+) + H(4)B(*)(+)) = 6.5 x 10(3) M(-1) s(-1) and k(H(3)B(*) + H(3)B(*)) = 9.3 x 10(4) M(-1) s(-1), respectively. The H(3)B(*) radical is scavenged by ascorbate (AscH(-)) with an estimated rate constant of k(H(3)B(*) + AscH(-)) similar 1.7 x 10(5) M(-1) s(-1). At physiological pH the pterin rapidly scavenges a range of biological oxidants often associated with cellular oxidative stress and nitric oxide synthase (NOS) dysfunction including hydroxyl ((*)OH), nitrogen dioxide (NO(2)(*)), glutathione thiyl (GS(*)), and carbonate (CO(3)(*-)) radicals. Without exception these radicals react appreciably faster with H(4)B than with AscH(-) with k(*OH + H(4)B) = 8.8 x 10(9) M(-1) s(-1), k(NO(2)(*) + H(4)B) = 9.4 x 10(8) M(-1) s(-1), k(CO(3)(*-) + H(4)B) = 4.6 x 10(9) M(-1) s(-1), and k(GS(*) + H(4)B) = 1.1 x 10(9) M(-1) s(-1), respectively. The glutathione disulfide radical anion (GSSG(*-)) rapidly reduces the pterin to the tetrahydrobiopterin radical anion (H(4)B(*-)) with a rate constant of k(GSSG(*-) + H(4)B) similar 4.5 x 10(8) M(-1) s(-1). The results are discussed in the context of the general antioxidant properties of the pterin and the redox role played by H(4)B in NOS catalysis.  相似文献   

12.
Kochman A  Kośka C  Metodiewa D 《Amino acids》2002,23(1-3):95-101
This overview summarizes recent findings on the role of tyrosyl radical (TyrO(*)) in the multitudinous neurochemical systems of brain, and theorizes on the putative role of TyrO(*) in neurological disorders [Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS)]. TyrO(*) and tyrosine per se can interact with reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radical mechanisms and chain propagating reactions. The concentration of TyrO(*), ROS and RNS can increase dramatically under conditions of generalized stress: oxidative, nitrative or reductive as well, and this can induce damage directly (by lipid peroxidation) or indirectly (by proteins oxidation and/or nitration), potentially causing apoptotic neuronal cell death or autoschizis.Evidence of lesion-induced neuronal oxidative stress includes the presence of protein peroxides (TyrOOH), DT (o,o'-dityrosine) and 3-NT (3-nitrotyrosine). Mechanistic details of protein- and enzymatic oxidation/nitration in vivo remain unresolved, although recent in vitro data strongly implicate free radical pathways via TyrO(*). Nitration/denitration processes can be pathological, but they also may play: 1). a signal transduction role, because nitration of tyrosine residues through TyrO(*) formation can modulate, as well the phosphorylation (tyrosine kinases activity) and/or tyrosine hydroxylation (tyrosine hydroxylase inactivation), leading to consequent dopamine synthesis failure and increased degradation of target proteins, respectively; 2). a role of "blocker" for radical-radical reactions (scavenging of NO(*), NO(*)(2) and CO(3)(*-) by TyrO(*)); 3). a role of limiting factors for peroxynitrite formation, by lowering O(2)(*-) formation, which is strongly linked to the pathogenesis of neural diseases.It is still not known if tyrosine oxidation/nitration via TyrO(*) formation is 1). a footprint of generalized stress and neuronal disorders, or 2). an important part of O(2)(*-) and NO(*) metabolism, or 3). merely a part of integral processes for maintaining of neuronal homeostasis. The full answer to these questions should be of top research priority, as the problem of increased free radical formation in brain and/or imbalance of the ratios ROS/RNS/TyrO(*) may be all important in defining whether oxidative stress is the critical determinant of tissue and neural cell injury that leads to pathological end-points.  相似文献   

13.
UV absorption spectra of guanine derivatives m9Gua, m(2)2,9Gua, m1Gua, m(2)1,7Gua, m3Gua, G, dG, m1G, m2G, m7G, as well as guanine analogue isoGua were studied in anhydrous dimethylsulfoxide (DMSO). Changes in UV absorption spectra of guanine derivatives in the presence of amino acid derivatives with neutral carboxylic group (ac-Asp, ac-Glu, ac-Gly, ac-Asp-OMe) or deprotonated carboxylic group (NaAc, f-Gly-ONa) were investigated and interpreted. The m1Gua and m7Gua derivatives were shown to exist as the N9H tautomers in anhydrous DMSO. The majority of examined guanine derivatives were determined to interact with deprotonated carboxylic group only, except of m7G, isoGua and m3Gua, which are able to form complexes with neutral carboxylic group as well.  相似文献   

14.
Activation of a heterotrimeric G-protein by an agonist-stimulated G-protein-coupled receptor requires the propagation of structural signals from the receptor binding interface to the guanine nucleotide binding pocket of the G-protein. To probe the molecular basis of this signaling process, we are applying high resolution NMR to track structural changes in an isotope-labeled, full-length G-protein alpha-subunit (G(alpha)) chimera (ChiT) associated with G-protein betagamma-subunit (G(betagamma)) and activated receptor (R(*)) interactions. Here, we show that ChiT can be functionally reconstituted with G(betagamma) as assessed by aluminum fluoride-dependent changes in intrinsic tryptophan fluorescence and light-activated rhodopsin-catalyzed guanine nucleotide exchange. We further show that (15)N-ChiT can be titrated with G(betagamma) to form stable heterotrimers at NMR concentrations. To assess structural changes in ChiT upon heterotrimer formation, HSQC spectra of the (15)N-ChiT-reconstituted heterotrimer have been acquired and compared with spectra obtained for GDP/Mg(2+)-bound (15)N-ChiT in the presence and absence of aluminum fluoride and guanosine 5'-3-O-(thio)triphosphate (GTPgammaS)/Mg(2+)-bound (15)N-ChiT. As anticipated, G(betagamma) association with (15)N-ChiT results in (1)HN, (15)N chemical shift changes relative to the GDP/Mg(2+)-bound state. Strikingly, however, most (1)HN, (15)N chemical shift changes associated with heterotrimer formation are the same as those observed upon formation of the GDP.AlF(4)(-)/Mg(2+)- and GTPgammaS/Mg(2+)-bound states. Based on these comparative analyses, assembly of the heterotrimer appears to induce structural changes in the switch II and carboxyl-terminal regions of G(alpha) ("preactivation") that may facilitate the interaction with R(*) and subsequent GDP/GTP exchange.  相似文献   

15.
In a study of guanine.HCl.H2O (Gm) single crystals X-irradiated at temperatures between 10 and 77 K, three radical species were found and characterized by ESR and ENDOR spectroscopy. All three are primary products in that they were present immediately following irradiation at T less than 10 K. Radical I, which apparently can exist in two slightly different conformations, was identified as the product of electron gain by the parent molecule and subsequent protonation at O6. Radical I decayed only after warming the crystals beyond 250 K. Radical II was the guanine cation previously reported (D. M. Close, E. Sagstuen, and W. H. Nelson, J. Chem. Phys. 82, 4386 (1985)); however, ENDOR data are reported here which confirm the previous results. The guanine cation in Gm resulted from electron loss from the parent and subsequent deprotonation at N7. It is proposed that Radical III results from OH attack at C8 of the parent molecule, followed by rupture of the C8-N9 bond and ring opening. The OH radicals thought to produce Radical III result from electron loss by the cocrystallized water molecules. The reaction leading to Radical III, unusual in solid-state radiation chemistry, is thought to be mediated by the specific hydrogen bonding network in this crystal.  相似文献   

16.
鸟嘌呤碱基与羟基自由基反应的密度泛函理论   总被引:3,自引:0,他引:3  
羟基自由基 (·OH)进攻嘌呤碱基是破坏核酸造成DNA断链损伤的重要原因之一 .采用密度泛函 (DFT)理论中B3LYP方法在 6— 31G基组水平上对鸟嘌呤 (G)受羟基自由基进攻形成的各种可能产物自由基进行几何全优化 .根据总能量、键长和自旋密度的计算结果 ,从理论上确认了C 5和C 8位加成机制 .得产物自由基G5OH·、G8OH· ,且G5OH·易与N 11位H脱水得一个更稳定的产物自由基 ,而G8OH·不易发生开环反应 ,得到与实验一致的结论 .这些稳定自由基的形成造成DNA断链损伤  相似文献   

17.
Bucillamine (BUC) is used clinically for the treatment of rheumatoid arthritis. Some of the pharmacological action of BUC has been reported as being dependent on the production of reactive oxygen species (ROS). In this paper the reactivity of BUC with superoxide anion radical (O(2) (*-)) generated from potassium superoxide/18-crown-6 ether dissolved in DMSO, hydroxyl radical (HO(*)) produced in the Cu(2+)-H(2)O(2) reaction, peroxyl radical (ROO(*)) from 2,2'-azobis (2-amidino-propane) dichloride decomposition, and singlet oxygen ((1)O(2)) from a mixture of alkaline aqueous H(2)O(2) and acetonitrile, have been investigated. Chemiluminescence, fluorescence, electron paramagnetic resonance (EPR) spin-trapping techniques and the deoxyribose and oxygen radical absorbance capacity towards ROO(*) (ORAC(ROO)) assays were used to elucidate the anti- and pro-oxidative behaviours of BUC towards ROS. The results indicated that BUC efficiently inhibited chemiluminescence from the O(2) (*-)-generating system at relatively high concentrations (0.5-2 mmol/L); however, at lower concentrations (<0.5 mmol/L) the drug enhanced light emission. The behaviour of BUC was correlated with a capacity to decrease the chemiluminescence signal from the Cu(2+)-H(2)O(2) system; scavenging HO(*) was effective only at high concentrations (1-2 mmol/L) of the drug. Bucillamine also prevented deoxyribose degradation induced by HO(*) in a dose-dependent manner, reaching maximal inhibition (24.5%) at a relative high concentration (1.54 mmol/L). Moreover, BUC reacts with ROO(*); the relative ORAC(ROO) was found to be 0.34 micromol/L Trolox equivalents/micromol sample. The drug showed quenching of (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine-N-oxide radical formation from 2,2,6,6-tetramethyl-piperidine (e.g. 90% inhibition was found at 1 mmol/L concentration). The results showed that BUC may directly scavenge ROS or inhibit reactions generating them. However, the drug may have pro-oxidant activity under some reaction conditions.  相似文献   

18.
Nitric oxide (NO(*)) reacts with guanine in DNA and RNA to produce xanthine (X) as a major product. Despite its potential importance in NO(*)-mediated mutagenesis, the biochemical properties of X in polynucleotides have been relatively unexplored. We describe the synthesis and chemical characterization of xanthine-containing oligonucleotides and report on the susceptibility of X to depurination, its miscoding potential during replication by polymerases, and its recognition and excision by several members of the base excision repair (BER) family of DNA glycosylases. At neutral pH, X was found to be only slightly less stable than guanine to depurination (k(X)/k(G) = 1.19), whereas at pH Mpg > Nth > Fpg. Implications of these results for the induction of mutations by nitric oxide are discussed.  相似文献   

19.
Two series of duplex DNA oligomers were prepared having an anthraquinone derivative (AQ) covalently linked at a 5′-terminus. Irradiation of the AQ at 350 nm leads to injection of an electron hole (radical cation) into the DNA. The radical cation migrates through the DNA causing reaction primarily at Gn sequences. In one series, GA tandem mispairs are inserted between GG steps to assess the effect of the mispair on the transport of the radical cation, reaction (damage) caused by the radical cation at the mispair, and repair of the resulting damage by formamidopyrimidine DNA glycosylase (Fpg). In the second series, a bulged guanine in a G3C2 sequence is interposed between the GG steps. These experiments reveal that neither G/A tandem mispairs nor bulged guanines are significant barriers to long-range charge migration in DNA. The radical cation does not cause reaction at guanines in the G/A tandem mispair. Reaction does occur at the bulged guanine, but it is repaired by Fpg.  相似文献   

20.
This work presents the hypothesis that photo-excitation of G.+ in DNA and model systems results in the same electronic states expected from direct ionization of the sugar phosphate backbone and that these states lead to specific sugar radicals on the DNA sugar phosphate backbone. As evidence we show that visible photo-excitation of guanine cation radicals (G.+) in the dinucleoside phosphate TpdG results in high yields (about 85%) of deoxyribose sugar radicals at the C1' and C3' sites. Further, we have calculated transition energies of hole transfer from G.+ in TpdG using time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d) level in gas phase as well as in a solvated environment. These calculations clearly predict that visible excitation of G.+ in TpdG causes transitions from only inner-shell filled molecular orbitals (MOs) to the singly occupied molecular orbital (SOMO) that effectively result in hole transfer from guanine either to the sugar phosphate backbone or to the adjacent base, thymine. The hole transfer is followed by rapid deprotonation from the sugar to form C1' and C3' radicals. These experimental and theoretical results are in agreement with our previously published experimental and theoretical results that photo-excitation of G.+ results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. Photo-excitation of G.+ therefore provides a convenient method to produce and study sugar radicals that are expected to be formed in gamma-irradiated DNA systems unencumbered by the many other pathways involved in direct ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号