首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is evidence that the transient channel of temporal human vision behaves as a linear filter for small excursions around a steady background level. The linear filter characteristics depend on the background level. From experimentally obtained impulse responses of the transient channel the linear filter can be modelled and parametrized. This has been done for two different background levels. The two sets of estimated parameters at these two levels show a shift in the parameters which can be described by a single multiplication factor. This result was extrapolated to arbitrary background levels by postulating that each change in background level can be described by a multiplication factor. This leads to an assumption on the variation of the parameters of the linear filter of the transient channel with changes in the background level. This assumption is tested by simulating the system for different parameter sets of the linear filter. The simulations give a good agreement with experimental data on threshold-versus-duration curves and de Lange curves. The (minor) quantitative differences in simulations and experimental data can be explained.  相似文献   

3.
A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes.  相似文献   

4.
Visual latencies, and their variation with stimulus attributes, can provide information about the level in the visual system at which different attributes of the image are analysed, and decisions about them made. A change in the colour, structure or movement of a visual stimulus brings about a highly reproducible transient constriction of the pupil that probably depends on visual cortical mechanisms. We measured this transient response to changes in several attributes of visual stimuli, and also measured manual reaction times to the same stimulus changes. Through analysis of latencies, we hoped to establish whether changes in different stimulus attributes were processed by mechanisms at the same or different levels in the visual pathway. Pupil responses to a change in spatial structure or colour are almost identical, but both are ca. 40 ms slower than those to a change in light flux, which are thought to depend largely on subcortical pathways. Manual reaction times to a change in spatial structure or colour, or to the onset of coherent movement, differ reliably, and all are longer than the reaction time to a change in light flux. On average, observers take 184 ms to detect a change in light flux, 6 ms more to detect the onset of a grating, 30 ms more to detect a change in colour, and 37 ms more to detect the onset of coherent motion. The pattern of latency variation for pupil responses and reaction times suggests that the mechanisms that trigger the responses lie at different levels in cortex. Given our present knowledge of visual cortical organization, the long reaction time to the change in motion is surprising. The range of reaction times across different stimuli is consistent with decisions about the onset of a grating being made in V1 and decisions about the change in colour or change in motion being made in V4.  相似文献   

5.
The fruit fly Drosophila melanogaster has a sophisticated visual system and exhibits complex visual behaviors. Visual responses, vision processing and higher cognitive processes in Drosophila have been studied extensively. However, little is known about whether the retinal location of visual stimuli can affect fruit fly performance in various visual tasks. We tested the response of wild-type Berlin flies to visual stimuli at several vertical locations. Three paradigms were used in our study: visual operant conditioning, visual object fixation and optomotor response. We observed an acute zone for visual feature memorization in the upper visual field when visual patterns were presented with a black background. However, when a white background was used, the acute zone was in the lower visual field. Similar to visual feature memorization, the best locations for visual object fixation and optomotor response to a single moving stripe were in the lower visual field with a white background and the upper visual field with a black background. The preferred location for the optomotor response to moving gratings was around the equator of the visual field. Our results suggest that different visual processing pathways are involved in different visual tasks and that there is a certain degree of overlap between the pathways for visual feature memorization, visual object fixation and optomotor response.  相似文献   

6.
In primates the retina is connected with different targets in the brain via several parallel pathways, the largest of which is that going to the lateral geniculate nucleus of the thalamus and thence to the striate cortex, the geniculo-striate pathway. When this route is damaged in man, apparent blindness in a corresponding part of the visual field occurs, despite the integrity of the other parallel pathways. In animals, it has been demonstrated by conventional behavioural forced-choice techniques that extrastriate routes can sustain a variety of visual discriminations. Comparable discriminations are also possible in some human subjects with geniculo-striate damage when forced-choice 'guessing' techniques are used. 'Blind-sight' refers to those subjects who state that they are unaware of the visual stimuli, even when performing discriminations at high levels of proficiency. Extensions of this approach are reviewed, especially to spectral sensitivity and movement discrimination. But residual capacities can also be assessed without requiring guessing responses, thereby avoiding issues of differential response criteria and other practical difficulties. Effects of 'unseen' stimuli in the cortically blind field on the visible perception of concurrent stimuli in the intact field can be measured. Also, positive reactions of the autonomic nervous system, such as the galvanic skin response, can be recorded to visual stimuli presented in the blind field. Recent evidence demonstrates that the pupil in normal adult subjects is systematically sensitive to structural and chromatic features of visual stimuli. Pupillometry reveals specific changes and residual capacities in visual-field defects of adult patients with striate cortical damage. Thus non-verbal and sensitive methods are available that permit the comparative study of normal and residual visual capacity in human infants, adults and infra-human animals.  相似文献   

7.
 Evoked potentials – the brain's transient electrical responses to discrete stimuli – are modeled as impulse responses using a continuum model of brain electrical activity. Previous models of ongoing brain activity are refined by adding an improved model of thalamic connectivity and modulation, and by allowing for two populations of excitatory cortical neurons distinguished by their axonal ranges. Evoked potentials are shown to be modelable as an impulse response that is a sum of component responses. The component occurring about 100 ms poststimulus is attributed to sensory activation, and this, together with positive and negative feedback pathways between the cortex and thalamus, results in subsequent peaks and troughs that semiquantitatively reproduce those of observed evoked potentials. Modulation of the strengths of positive and negative feedback, in ways consistent with psychological theories of attentional focus, results in d istinct responses resembling those seen in experiments involving attentional changes. The modeled impulse responses reproduce key features of typical experimental evoked response potentials: timing, relative amplitude, and number of peaks. The same model, with further modulation of feedback, also reproduces experimental spectra. Together, these results mean that a broad range of ongoing and transient electrocortical activity can be understood within a common framework, which is parameterized by values that are directly related to physiological and anatomical quantities. Received: 22 May 2001 / Accepted in revised form: 8 January 2002  相似文献   

8.
The purpose of this study was to examine the extent of modification of the preactivation and stretch reflex response in ankle joint muscles to different contact surfaces and visual input during movement to absorb impact. Experimental movements like landing were performed using a special sliding apparatus. Seven subjects made landings on the hard surface (Hard-S) of a metal force platform or soft surface (Soft-S) of a foam cushion with eyes open or closed. The electromyographic activities from the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) muscles, contact force, and ankle joint angle were recorded. The preactivation levels of MG and TA to Hard-S increased compared to Soft-S. After foot contact, dorsiflexion velocity, impulse, and responses of the stretch reflex in MG and Sol were significantly larger on Hard-S than Soft-S. With eyes closed, there were trends of decrease in the preactivation. Although the dorsiflexion velocity and impulse showed no significant differences between both visual conditions, the stretch reflex responses with eyes closed were larger than those with eyes open for both surfaces. These results suggest that the preactivation is modulated to different surface and the reflex gain is enlarged by visual suppression.  相似文献   

9.
Human heading perception based on optic flow is not only accurate, it is also remarkably robust and stable. These qualities are especially apparent when observers move through environments containing other moving objects, which introduce optic flow that is inconsistent with observer self-motion and therefore uninformative about heading direction. Moving objects may also occupy large portions of the visual field and occlude regions of the background optic flow that are most informative about heading perception. The fact that heading perception is biased by no more than a few degrees under such conditions attests to the robustness of the visual system and warrants further investigation. The aim of the present study was to investigate whether recurrent, competitive dynamics among MSTd neurons that serve to reduce uncertainty about heading over time offer a plausible mechanism for capturing the robustness of human heading perception. Simulations of existing heading models that do not contain competitive dynamics yield heading estimates that are far more erratic and unstable than human judgments. We present a dynamical model of primate visual areas V1, MT, and MSTd based on that of Layton, Mingolla, and Browning that is similar to the other models, except that the model includes recurrent interactions among model MSTd neurons. Competitive dynamics stabilize the model’s heading estimate over time, even when a moving object crosses the future path. Soft winner-take-all dynamics enhance units that code a heading direction consistent with the time history and suppress responses to transient changes to the optic flow field. Our findings support recurrent competitive temporal dynamics as a crucial mechanism underlying the robustness and stability of perception of heading.  相似文献   

10.
The dual reciprocal and antagonistic organization of B- and D-neurons of the afferent visual system is obtained using differentiation and integration as mathematical equivalents of visual information processing by an impulse frequency code. The spatial and temporal derivatives lead to the transient responses. A constant and a time-dependent term proportional to the luminance distribution describe the sustained response components and the shift-effect of retinal on- and off-center ganglion cells. Receptive field properties of lateral geniculate cells and their antagonistic shift-effect are obtained by passing the retinal output, i.e. the difference between B- and D-neurons' activity, once again through the same operations. However, the factor of proportionality is applied to the retina alone. The surprisingly small difference between retinal and geniculate receptive field properties on the one hand and the dramatic change from a synergistic to an antagonistic shift-effect on the other hand are thereby explained. The theory offers an understanding of a a possible functional significance of the shift-effect as a mechanism of transientrestoration of visual information, which prevents the system from total fading by means of shifts of the retinal image, normally produced by eye movements.  相似文献   

11.
Hu M  Wang Y  Wang Y 《PloS one》2011,6(10):e25410
The visual information we receive during natural vision changes rapidly and continuously. The visual system must adapt to the spatiotemporal contents of the environment in order to efficiently process the dynamic signals. However, neuronal responses to luminance contrast are usually measured using drifting or stationary gratings presented for a prolonged duration. Since motion in our visual field is continuous, the signals received by the visual system contain an abundance of transient components in the contrast domain. Here using a modified reverse correlation method, we studied the properties of responses of neurons in the cat primary visual cortex to different contrasts of grating stimuli presented statically and transiently for 40 ms, and showed that neurons can effectively discriminate the rapidly changing contrasts. The change in the contrast response function (CRF) over time mainly consisted of an increment in contrast gain (CRF shifts to left) in the developing phase of temporal responses and a decrement in response gain (CRF shifts downward) in the decay phase. When the distribution range of stimulus contrasts was increased, neurons demonstrated decrement in contrast gain and response gain. Our results suggest that contrast gain control (contrast adaptation) and response gain control mechanisms are well established during the first tens of milliseconds after stimulus onset and may cooperatively mediate the rapid dynamic responses of visual cortical neurons to the continuously changing contrast. This fast contrast adaptation may play a role in detecting contrast contours in the context of visual scenes that are varying rapidly.  相似文献   

12.
1.  A theory is presented that utilizes the structure of natural images, and how they change in time, to produce spatiotemporal filters that maximize information flow through a noisy channel of limited dynamic range. For low signal-to-noise ratios (SNRs) the filter has low-pass, and for high SNRs band-pass characteristics, both in space and time.
2.  Theoretical impulse responses are compared to measurements in Large Monopolar Cells (LMCs) in the fly (Calliphora vicina) brain. Two different spatial stimuli (point source and wide field) were given at background intensities over a 5.5 log unit wide range. Theory and experiment correspond well, and they share the following properties: impulse responses get much faster and more biphasic with increasing background intensity (SNR); they show larger off-transients for wide field stimuli than for point sources; the half-width of the spatial receptive field changes only slightly with increased intensity, and lateral inhibition increases; contrast efficiency increases with intensity.
  相似文献   

13.
The influence of different types of maneuvers that can induce sudden changes of arterial blood pressure (ABP) on the cerebral blood flow velocity (CBFV) response was studied in 56 normal subjects (mean age 62 yr, range 23-80). ABP was recorded in the finger with a Finapres device, and bilateral recordings of CBFV were performed with Doppler ultrasound of the middle cerebral arteries. Recordings were performed at rest (baseline) and during the thigh cuff test, lower body negative pressure, cold pressor test, hand grip, and Valsalva maneuver. From baseline recordings, positive and negative spontaneous transients were also selected. Stability of PCO2 was monitored with transcutaneous measurements. Dynamic autoregulatory index (ARI), impulse, and step responses were obtained for 1-min segments of data for the eight conditions by fitting a mathematical model to the ABP-CBFV baseline and transient data (Aaslid's model) and by the Wiener-Laguerre moving-average method. Impulse responses were similar for the right- and left-side recordings, and their temporal pattern was not influenced by type of maneuver. Step responses showed a sudden rise at time 0 and then started to fall back to their original level, indicating an active autoregulation. ARI was also independent of the type of maneuver, giving an overall mean of 4.7 +/- 2.9 (n = 602 recordings). Amplitudes of the impulse and step responses, however, were significantly influenced by type of maneuver and were highly correlated with the resistance-area product before the sudden change in ABP (r = -0.93, P < 0.0004). These results suggest that amplitude of the CBFV step response is sensitive to the point of operation of the instantaneous ABP-CBFV relationship, which can be shifted by different maneuvers. Various degrees of sympathetic nervous system activation resulting from different ABP-stimulating maneuvers were not reflected by CBFV dynamic autoregulatory responses within the physiological range of ABP.  相似文献   

14.
Reaction time (RT) and the number of correct estimations of time microintervals (10 and 180 ms) between two visual stimuli were recorded in healthy subjects. It has been shown that 10 ms interval is better estimated when the stimuli are presented in the right visual field, i.e. when they are addressed directly to the left hemisphere. At the same time the number of correct estimations of 180 ms interval is greater and their RT is less when the stimuli are addressed directly to the right hemisphere. This points to different hemispheric mechanisms of time microintervals estimation. Study of the influence of different forms of verbal reinforcement on this learning has shown that after positive reinforcement (the word "good") the number of correct estimations is on average by 10% greater than after negative reinforcement (the word "error"). This may be connected with such processes as isolation and identification of erroneous reaction.  相似文献   

15.
16.
Representation of color stimuli in awake macaque primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimuli were presented on colored backgrounds, chromatic tuning was different in most neurons, and the changes in tuning were consistent with some degree of sensitivity of the neurons to the chromatic contrast between stimulus and background. Quantitatively, the average response changes matched the magnitudes of color induction effects measured in human subjects under corresponding stimulus conditions.  相似文献   

17.
 The different cortical visual cells exhibit a large repertoire of responses to sinusoidal gratings, depending on their receptive field structure and the stimulation parameters. It has been shown previously that the tuning curves and histogram shapes of cell responses are affected by subunit distances. One receptive field model (Spitzer and Hochstein 1985b) incorporated subunit distance but assigned it as a constant parameter, for ease of calculation. Here we investigate different tuning curve properties of various primary cortical cell types during testing of 10 deg of nonuniform distances of the receptive fields’ subunits. The effect of nonuniformity was compared for average responses, tuning curve shapes, maximum peak responses, and bandwidths across four cell types of different sizes. The shapes and other properties of tuning curves are usually found to be retained also when the degree of uniformity is not very high for most of the cell types. In addition, the effect of uniformity is compared across these different response properties. The maximum peak responses of the tuning curve are found to display a lower coefficient of variation than the bandwidth, for all cell types, for most degrees of uniformity. Received: 15 June 1993/Accepted in revised form: 5 August 1994  相似文献   

18.
Visual neurons have spatial receptive fields that encode the positions of objects relative to the fovea. Because foveate animals execute frequent saccadic eye movements, this position information is constantly changing, even though the visual world is generally stationary. Interestingly, visual receptive fields in many brain regions have been found to exhibit changes in strength, size, or position around the time of each saccade, and these changes have often been suggested to be involved in the maintenance of perceptual stability. Crucial to the circuitry underlying perisaccadic changes in visual receptive fields is the superior colliculus (SC), a brainstem structure responsible for integrating visual and oculomotor signals. In this work we have studied the time-course of receptive field changes in the SC. We find that the distribution of the latencies of SC responses to stimuli placed outside the fixation receptive field is bimodal: The first mode is comprised of early responses that are temporally locked to the onset of the visual probe stimulus and stronger for probes placed closer to the classical receptive field. We suggest that such responses are therefore consistent with a perisaccadic rescaling, or enhancement, of weak visual responses within a fixed spatial receptive field. The second mode is more similar to the remapping that has been reported in the cortex, as responses are time-locked to saccade onset and stronger for stimuli placed in the postsaccadic receptive field location. We suggest that these two temporal phases of spatial updating may represent different sources of input to the SC.  相似文献   

19.
A visual stimulus activates different sized cortical area depending on eccentricity of the stimulus. Here, our aim is to understand whether the visual field size of a stimulus or cortical size of the corresponding representation determines how strongly it interacts with other stimuli. We measured surround modulation of blood-oxygenation-level-dependent signal and perceived contrast with surrounds that extended either towards the periphery or the fovea from a center stimulus, centered at 6° eccentricity. This design compares the effects of two surrounds which are identical in visual field size, but differ in the sizes of their cortical representations. The surrounds produced equally strong suppression, which suggests that visual field size of the surround determines suppression strength. A modeled population of neuronal responses, in which all the parameters were experimentally fixed, captured the pattern of results both in psychophysics and functional magnetic resonance imaging. Although the fovea-periphery anisotropy affects nearly all aspects of spatial vision, our results suggest that in surround modulation the visual system compensates for it.  相似文献   

20.
Synfire chains, sequences of pools linked by feedforward connections, support the propagation of precisely timed spike sequences, or synfire waves. An important question remains, how synfire chains can efficiently be embedded in cortical architecture. We present a model of synfire chain embedding in a cortical scale recurrent network using conductance-based synapses, balanced chains, and variable transmission delays. The network attains substantially higher embedding capacities than previous spiking neuron models and allows all its connections to be used for embedding. The number of waves in the model is regulated by recurrent background noise. We computationally explore the embedding capacity limit, and use a mean field analysis to describe the equilibrium state. Simulations confirm the mean field analysis over broad ranges of pool sizes and connectivity levels; the number of pools embedded in the system trades off against the firing rate and the number of waves. An optimal inhibition level balances the conflicting requirements of stable synfire propagation and limited response to background noise. A simplified analysis shows that the present conductance-based synapses achieve higher contrast between the responses to synfire input and background noise compared to current-based synapses, while regulation of wave numbers is traced to the use of variable transmission delays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号