首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimates of phenoloxidase (PO) activity have been suggested as a useful indicator of immunocompetence in arthropods, with the idea that high PO activity would indicate high immunocompetence against parasites and pathogens. Here, we test for variation in PO activity among clones of the planktonic crustacean Daphnia magna and its covariation with susceptibility to infections from four different microparasite species (one bacterium and three microsporidia). Strong clonal variation in PO activity was found within and among populations of D. magna, with 45.6% of the total variation being explained by the clone effect. Quantitative measures of parasite success in infection correlated negatively with PO activity when tested across four host populations. However, these correlations disappeared when the data were corrected for population effects. We conclude that PO activity is not a useful measure of resistance to parasites or of immunocompetence within populations of D. magna. We further tested whether D. magna females that are wounded to induce PO activity are more resistant to infections with the bacterium Pasteuria ramosa than non-wounded controls. We found neither a difference in susceptibility nor a difference in disease progression between the induced group and the control group. These results do not question the function of the PO system in arthropod immune response, but rather suggest that immunocompetence cannot be assessed by considering PO activity alone. Immune response is likely to be a multifactorial trait with various host and parasite characteristics playing important roles in its expression.  相似文献   

2.
Genetic variation among hosts for resistance to parasites is an important assumption underlying evolutionary theory of host and parasite evolution. Using the castrating bacterial parasite Pasteuria ramosa and its cladoceran host Daphnia magna, we examined both within- and between-population genetic variation for resistance. First, we tested hosts from four populations for genetic variation for resistance to three parasite isolates. Allozyme analysis revealed significant host population divergence and that genetic distance corresponds to geographic distance. Host and parasite fitness components showed strong genetic differences between parasite isolates for host population by parasite interactions and for clones within populations, whereas host population effects were significant for only a few traits. In a second experiment we tested explicitly for within-population differences in variation for resistance by challenging nine host clones from a single population with four different parasite spore doses. Strong clone and dose effects were evident. More susceptible clones also suffered higher costs once infected. The results indicate that within-population variation for resistance is high relative to between-population variation. We speculate that P. ramosa adapts to individual host clones rather than to its host population.  相似文献   

3.
S. E. Mitchell  J. Halves  W. Lampert 《Oikos》2004,106(3):469-478
We investigated the diversity and thermal response of a fitness related trait, juvenile growth rate, in seasonal population samples of Daphnia magna from two temperate ponds. Both populations were intermittent, i.e. they disappeared from the water body and recolonized seasonally by hatching from resting eggs in the sediment.
Temporally isolated clones of Daphnia magna showed the typical asymmetric response for growth rate with temperature and a sharp decline after the maximum response at 26°C (TMR). There was no evidence for genetically adapted seasonal groups. Despite significant genetic variation among clones and for phenotypic plasticity (G×E interactions without genetic correlations), seasonal groups of clones showed no shift in TMR and mean temperature reaction norms were similar among groups and both populations. Heritabilities remained similar among temperatures despite a large increase in genetic variance at stressfully high temperatures of 29°C and 32°C, due to simultaneous increase in environmental variance. Further, heritabilities remained high among sample periods and were not eroded during several months of asexual reproduction.
Regular diapause, an intrinsic feature of intermittent Daphnia populations, may replace the need for physiological temperature adaptation and promote maintenance of diversity through phenotypic similarity by reducing the time over which competitive interactions occur. Such populations are unlikely to be directly affected by elevated temperatures. They have a large potential for phenotypic plasticity as their TMR is higher than the temperature normally encountered.  相似文献   

4.
Specificity in parasitic interactions can be defined by host genotypes that are resistant to only a subset of parasite genotypes and parasite genotypes that are infective on a subset of host genotypes. It is not always clear if specificity is determined by the genotypes of the interactors, or if phenotypic plasticity (sometimes called acclimation) plays a larger role. Coevolutionary outcomes critically depend on the pervasiveness of genetic interactions. We studied specificity using the bacterial parasite Pasteuria ramosa and its crustacean host Daphnia magna. First, we tested for short-term adaptation of P. ramosa lines that had been rapidly shifted among different host genotypes. Adaptation at this time-scale would demonstrate the contribution of phenotypic plasticity to specificity. We found that infectivity was stable across lines irrespective of recent passage history, indicating that in the short term infection outcomes are fixed by genetic backgrounds. Second, we studied longer-term evolution with two host clones and two parasite lines. In this experiment, P. ramosa lines had the possibility to evolve adaptations to the host genotype (clone) in which they were serially passaged, which allowed us to test for a genetic component to specificity. Substantial differences arose in the two passaged lines: one parasite line gained infectivity on the host clone it was grown on, but it lost infectivity on the other host genotype (this line evolved specificity), while the other parasite line evolved higher infectivity on both host clones. We crossed the two host genotypes used in the serial passage experiment and found evidence that the number of host genes that underlies resistance variation is small. In sum, our results show that P. ramosa specificity is a stably inherited trait, it can evolve rapidly, and it is controlled by few genes in the host. These findings are consistent with the idea of a rapid, ongoing arms race between the bacterium and its host.  相似文献   

5.
Abstract It has been suggested that parasites are a strong selecting force for their hosts and therefore may alter the outcome of competition among host genotypes. We tested the extent to which parasite-mediated selection by different parasite species influenced competition among clones of the cyclic parthenogen Daphnia magna . We monitored clone frequency changes in laboratory microcosm populations consisting of 21 D. magna clones. Parasite treatments (two microsporidians, Glugoides intestinalis and Ordospora colligata ) and a parasite-free control treatment were followed over a nine-month period. A further treatment with the bacterium Pasteuria ramosa failed. We found significant differences in clonal success among the treatments: the two parasite treatments differed from the control treatment and from each other. Additionally, we measured the clone-specific population carrying capacity, competitive ability against tester clones, and reproductive success of infected and uninfected females to test whether they correlate with clonal success in the microcosms. The clone-specific competitive ability was a good predictor of clonal success in the microcosms, but clonal carrying capacity and host reproductive success were not. Our study shows that parasite-mediated selection can strongly alter the outcome of clonal competition. The results suggest that parasites may influence microevolution in Daphnia populations during periods of asexual reproduction.  相似文献   

6.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

7.
1. We tested whether two neighbouring Daphnia galeata populations (from Lake Blankaart and Fish Pond), separated only by 5 m of land and with the occasional exchange of water were genetically differentiated in allozyme markers and life history traits. Allozyme electrophoresis revealed that the populations differed in allelic as well as in genotypic composition. 2. In a laboratory transplant experiment, in which animals of four clones of each of the populations were raised in the water of both ponds, survival in Blankaart water was high for both the Blankaart and Fish Pond clones, whereas survival in Fish Pond water was high for the Fish Pond clones, but low for the Blankaart clones. 3. Fish Pond clones produced fewer neonates than Blankaart clones when cultured in Blankaart water. High egg mortality was observed for animals that were raised in Blankaart water, and this egg mortality was higher for Fish Pond clones than for Blankaart clones. 4. Our results provide evidence for genetic differentiation between Daphnia populations inhabiting neighbouring water bodies and suggest local adaptation to environmental conditions other than direct predation.  相似文献   

8.
Abstract Organisms are often confronted with multiple enemy species. Defenses against different parasite species may be traded off against each other. However, if resistance is based on (potentially costly) general defense mechanisms, it may be positively correlated among parasites. In an experimental study, we confronted 19 clones from one Daphnia magna population with two bacterial and three microsporidian parasite species. All parasites were isolated from the same pond as the hosts. Host clones were specific in their susceptibility towards different parasite species, and parasite species were host-clone specific in their infectivity, spore production, and virulence, resulting in highly significant host-parasite interactions. Since the Daphnia 's resistance to different parasite species showed no obvious correlation, neither general defense mechanisms nor trade-offs in resistance explain our findings. None of the Daphnia clones were resistant to all parasite species, and the average level of resistance was quite similar among clones. This may reflect a cost of defense, so that the cumulative cost of being resistant to all parasite species might be too high.  相似文献   

9.
Although predation is a strong selection pressure, little is known about the molecular mechanisms to cope with predator stress. This is crucial to understanding of the mechanisms and constraints involved in the evolution of antipredator traits. We quantified the expression of heat-shock protein 60 (Hsp60), a potential marker for predator stress, in four clones of the water flea Daphnia magna, when exposed to fish kairomones. Expression of Hsp60 induction increased after 6 h and returned to base levels after 24 h of predator stress. This suggests that it is a costly transient mechanism to temporarily cope with novel predator stress, before other defences are induced. We found genetic variation in the fixed levels and in the fish-induced levels of Hsp60, which seemed to be linked to each clone's history of fish predation. Our data suggest that Hsp60 can be considered part of a multiple-trait antipredator defence strategy of Daphnia clones to cope with predator stress.  相似文献   

10.
Parasite-mediated selection is potentially of great importance in modulating genetic diversity. Genetic variation for resistance, the fuel for natural selection, appears to be common in host-parasite interactions, but responses to selection are rarely observed. In the present study, we tested whether environmental variation could mediate infection and determine evolutionary outcomes. Temperature was shown to dramatically alter the potential for parasite-mediated selection in two independent laboratory infection experiments at four temperatures. The bacterial parasite, Pasteuria ramosa, was extremely virulent at 20 degrees C and 25 degrees C, sterilizing its host, Daphnia magna, so that females often never produced a single brood. However, at 10 degrees C and 15 degrees C, the host-parasite interaction was much more benign, as nearly all females produced broods before becoming sterile. This association between virulence and temperature alone could stabilize coexistence and lead to the maintenance of diversity, because it would weaken parasite-mediated selection during parts of the season. Additionally, highly significant genotype-by-environment interactions were found, with changes in clone rank order for infection rates at different temperatures. Our results clearly show that the outcome of parasite-mediated selection in this system is strongly context dependent.  相似文献   

11.
Abstract It has been proposed that parasitic infections increase selection against inbred genotypes. We tested this hypothesis experimentally using pairs of selfed and outcrossed sibling lines of the freshwater crustacean Daphnia magna , which can be maintained clonally. We studied the performance of selfed relative to outcrossed sibling clones during repeated pairwise clonal competition in the presence and absence of two species of microsporidian parasites. In 13 of the 14 pairs, the selfed clones did worse than the outcrossed ones in the control treatment, but the presence of either parasite did not result in an overall increase in this difference. Rather, it decreased the performance of the selfed relative to the outcrossed sibling in some pairs and increased it in others. Moreover, the two parasite species did not have the same effect in a given pair. This indicates that, contrary to the hypothesis that parasites generally lead to a decreased performance of inbred genotypes, their effect may depend on the genetic background of the host as well as on the parasite species, and suggests that inbreeding can lead to reduced or increased resistance to parasites. Our findings also indicate that there is variation for specific resistance to different species of parasites in the meta-population from which the hosts for this study were obtained.  相似文献   

12.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

13.
Costs of resistance, i.e. trade‐offs between resistance to parasites or pathogens and other fitness components, may prevent the fixation of resistant genotypes and therefore explain the maintenance of genetic polymorphism for resistance in the wild. Using two approaches, the cost of resistance to a sterilizing bacterial pathogen were tested for in the crustacean Daphnia magna. First, groups of susceptible and resistant hosts from each of four natural populations were compared in terms of their life‐history characteristics. Secondly, we examined the competitiveness of nine clones from one population for which more detailed information on genetic variation for resistance was known. In no case did the results show that competitiveness or life history characteristics of resistant Daphnia systematically differed from susceptible ones. These results suggest that costs of resistance are unlikely to explain the maintenance of genetic variation in D. magna populations. We discuss methods for measuring fitness and speculate on which genetic models of host‐parasite co‐evolution may apply to the Daphnia‐microparasite system.  相似文献   

14.
Studying resource specialization at the individual level can identify factors constraining the evolution of generalism. We quantified genotypic and phenotypic variability among infective stages of 20 clones of the parasitic trematode Maritrema novaezealandensis and measured their infection success and post-infection fitness (growth, egg output) in several crabs and amphipods. First, different clones varied in their infection success of different crustaceans. Second, neither genetic nor phenotypic traits had consistent effects on infection success across all host species. Although the results suggest a relationship between infection success and phenotypic variability, phenotypically variable clones were not better at infecting more host species than less variable ones. Third, genetic and phenotypic traits also showed no consistent correlations with post-infection fitness measures. Overall, we found no consistent clone-level specialization, with some clones acting as specialists and others, generalists. The trematode population therefore maintains an overall generalist strategy by comprising a mixture of clone-level specialists and generalists.  相似文献   

15.
The maintenance of genetic variation for infection-related traits is often attributed to coevolution between hosts and parasites, but it can also be maintained by environmental variation if the relative fitness of different genotypes changes with environmental variation. To gain insight into how infection-related traits are sensitive to environmental variation, we exposed a single host genotype of the freshwater crustacean Daphnia magna to four parasite isolates (which we assume to represent different genotypes) of its naturally co-occurring parasite Pasteuria ramosa at 15, 20 and 25 degrees C. We found that the cost to the host of becoming infected varied with temperature, but the magnitude of this cost did not depend on the parasite isolate. Temperature influenced parasite fitness traits; we found parasite genotype-by-environment (G x E) interactions for parasite transmission stage production, suggesting the potential for temperature variation to maintain genetic variation in this trait. Finally, we tested for temperature-dependent relationships between host and parasite fitness traits that form a key component of models of virulence evolution, and we found them to be stable across temperatures.  相似文献   

16.
Epidemiological models generally assume that the number of susceptible individuals that become infected within a unit of time depends on the density of the hosts and the concentration of parasites (i.e. mass-action principle). However, empirical studies have found significant deviations from this assumption due to biotic and abiotic factors, such as seasonality, the spatial structure of the host population and host heterogeneity with respect to immunity and susceptibility. In this paper, we examine the effect of the dose level of the bacterial endoparasite Pasteuria ramosa on the infection rate of its host, the water flea Daphnia magna. Using seven host clones and two parasite isolates, we measure the fraction of infected hosts after exposure to eight different parasite doses to determine whether there is variation in the infection process across different host clone-parasite isolate combinations. In five combinations, a pronounced dose-dependent infection pattern was found. Using a likelihood approach, we compare the infection data of these five combinations to the fit of three mathematical models: a mass-action model, a parasite antagonism model (i.e. an increase in the parasite dose leads to an under-proportionate increase in the infection rate per host) and a heterogeneous host model. We found that the host heterogeneity model, in which we assumed the existence of non-inherited phenotypic differences in host susceptibilities to the parasite, provides the best fit. Our analysis suggests that among 5 out of the 14 host clone-parasite isolate combinations that resulted in appreciable infections, non-genetic host heterogeneity plays an important role.  相似文献   

17.
Theoretical studies have indicated that the population genetics of host-parasite interactions may be highly dynamic. with parasites perpetually adapting to common host genotypes and hosts evolving resistance to common parasite genotypes. The present study examined temporal variation in resistance of hosts and infectivity of parasites within three populations of Daphnia magna infected with the sterilizing bacterium Pasteuria ramosa. Parasite isolates and host clones were collected in each of two years (1997, 1998) from one population; in two other populations, hosts were collected from both years, but parasites from only the first year. We then performed infection experiments (separately for each population) that exposed hosts to parasites from the same year or made combinations involving hosts and parasites from different years. In two populations, patterns were consistent with the evolution of host resistance: either infectivity or the speed with which parasites sterilized hosts declined from 1997 to 1998. In another population, infectivity, virulence, and parasite spore production did not vary among host-year or parasite-year. For this population, we also detected strong within-population genetic variation for resistance. Thus, in this case, genetic variability for fitness-related traits apparently did not translate into evolutionary change. We discuss a number of reasons why genetic change may not occur as expected in parasite-host systems, including negative correlations between resistance and other traits, gene flow, or that the dynamic process itself may obscure the detection of gene frequency changes.  相似文献   

18.
Disease patterns in nature may be determined by genetic variation for resistance or by factors, genetic or environmental, which influence the host-parasite encounter rate. Elucidating the cause of natural infection patterns has been a major pursuit of parasitologists, but it also matters for evolutionary biologists because host resistance genes must influence the expression of disease if parasite-mediated selection is to occur. We used a model system in order to disentangle the strict genetic component from other causes of infection in the wild. Using the crustacean Daphnia magna and its sterilizing bacterial parasite Pasteuria ramosa, we tested whether genetic variation for resistance, as determined under controlled conditions, accounted for the distribution of infections within natural populations. Specifically, we compared whether the clonally produced great-granddaughters of those individuals that were infected in field samples (but were subsequently 'cured' with antibiotics) were more susceptible than were the great-granddaughters of those individuals that were healthy in field samples. High doses of parasite spores led to increased infection in all four study populations, indicating the importance of encounter rate. Host genetics appeared to be irrelevant to natural infection patterns in one population. However, in three other populations hosts that were healthy in the field had greater genetic-based resistance than hosts that were infected in the field, unambiguously showing the effect of host genetic factors on the expression of disease in the wild.  相似文献   

19.
Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we tested for genetic variation in the multiple steps of defence when the invertebrate Daphnia magna is infected with the sterilizing bacterial pathogen Pasteuria ramosa: anti-infection resistance, anti-growth resistance and the ability to tolerate sterilization once infected. When exposed to nine doses of a genetically diverse pathogen inoculum, six host genotypes varied in their average susceptibility to infection and in their parasite loads once infected. How host fecundity changed with increasing parasite loads did not vary between genotypes, indicating that there was no genetic variation for this measure of fecundity tolerance. However, genotypes differed in their level of fecundity compensation under infection, and we discuss how, by increasing host fitness without targeting parasite densities, fecundity compensation is consistent with the functional definition of tolerance. Such infection-induced life-history shifts are not traditionally considered to be part of the immune response, but may crucially reduce harm (in terms of fitness loss) caused by disease, and are a distinct source of selection on pathogens.  相似文献   

20.
In metapopulations, only a fraction of all local host populations may be infected with a given parasite species, and limited dispersal of parasites suggests that colonization of host populations by parasites may involve only a small number of parasite strains. Using hosts and parasites obtained from a natural metapopulation, we studied the evolutionary consequences of invasion by single strains of parasites in experimental populations of the cyclical parthenogen Daphnia magna. In two experiments, each spanning approximately one season, we monitored clone frequency changes in outdoor container populations consisting of 13 and 19 D. magna clones, respectively. The populations were either infected with single strains of the microsporidian parasites Octosporea bayeri or Ordospora colligata or left unparasitized. In both experiments, infection changed the representation of clones over time significantly, indicating parasite-mediated evolution in the experimental populations. Furthermore, the two parasite species changed clone frequencies differently, suggesting that the interaction between infection and competitive ability of the hosts was specific to the parasite species. Taken together, our results suggest that parasite strains that invade local host populations can lead to evolutionary changes in the genetic composition of the host population and that this change is parasite-species specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号