首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xstir is a repetitive DNA sequence element that is extremely amplified as a common component of two different structures: a tandem repeat (Xstir array) and a MITE (miniature inverted-repeat transposable element) in the genome of Xenopus laevis. To elucidate the origin and evolutionary history of Xstir-related sequences, we investigated their species specificity among three Xenopus species (X. laevis, X. borealis, and X. tropicalis). Analyses by sequence alignment and digestion with restriction enzymes of genomic Xstir-related sequences revealed that the MITE (Xmix MITE) was well conserved among the three Xenopus species, with small lineage-specific differences. On the other hand, the tandem repeat element (tropXstir) in X. tropicalis was different from the Xstir that X. laevis and X. borealis have in common. Both sequences of Xstir and tropXstir were, however, different segments of the Xmix MITE. The results suggest that these tandem repeats were formed by partial tandem duplication of the MITE internal sequence in each lineage of X. tropicalis and of X. borealis/X. laevis after their branching. A molecular mechanism for creating and elongating the tandem repeats from the MITE is proposed.Reviewing Editor: Dr. Jerzy Jurka  相似文献   

2.
Tandemly repeated sequences are a major component of the eukaryotic genome. Although the general characteristics of tandem repeats have been well documented, the processes involved in their origin and maintenance remain unknown. In this study, a region on the paternal sex ratio (PSR) chromosome was analyzed to investigate the mechanisms of tandem repeat evolution. The region contains a junction between a tandem array of PSR2 repeats and a copy of the retrotransposon NATE, with other dispersed repeats (putative mobile elements) on the other side of the element. Little similarity was detected between the sequence of PSR2 and the region of NATE flanking the array, indicating that the PSR2 repeat did not originate from the underlying NATE sequence. However, a short region of sequence similarity (11/15 bp) and an inverted region of sequence identity (8 bp) are present on either side of the junction. These short sequences may have facilitated nonhomologous recombination between NATE and PSR2, resulting in the formation of the junction. Adjacent to the junction, the three most terminal repeats in the PSR2 array exhibited a higher sequence divergence relative to internal repeats, which is consistent with a theoretical prediction of the unequal exchange model for tandem repeat evolution. Other NATE insertion sites were characterized which show proximity to both tandem repeats and complex DNAs containing additional dispersed repeats. An ``accretion model' is proposed to account for this association by the accumulation of mobile elements at the ends of tandem arrays and into ``islands' within arrays. Mobile elements inserting into arrays will tend to migrate into islands and to array ends, due to the turnover in the number of intervening repeats. Received: 18 August 1997 / Accepted: 18 September 1998  相似文献   

3.
Centromeric repetitive sequences were isolated from Arabidopsis halleri ssp. gemmifera and A. lyrata ssp. kawasakiana. Two novel repeat families isolated from A. gemmifera were designated pAge1 and pAge2. These repeats are 180 bp in length and are organized in a head-to-tail manner. They are similar to the pAL1 repeats of A. thaliana and the pAa units of A. arenosa. Both A. gemmifera and A. kawasakiana possess the pAa, pAge1 and pAge2 repeat families. Sequence comparisons of different centromeric repeats revealed that these families share a highly conserved region of approximately 50 bp. Within each of the four repeat families, two or three regions showed low levels of sequence variation. The average difference in nucleotide sequence was approximately 10% within families and 30% between families, which resulted in clear distinctions between families upon phylogenetic analysis. FISH analysis revealed that the localization patterns for the pAa, pAge1 and pAge2 families were chromosome specific in A. gemmifera and A. kawasakiana. In one pair of chromosomes in A. gemmifera, and three pairs of chromosomes in A. kawasakiana, two repeat families were present. The presence of three families of centromeric repeats in A. gemmifera and A. kawasakiana indicates that the first step toward homogenization of centromeric repeats occurred at the chromosome level.Communicated by W. R. McCombie  相似文献   

4.
Abundant human interspersed repetitive DNA sequences of the form (dC-dA)n · (dG-dT)n have been shown to exhibit length polymorphisms. Examination of over 100 human (dC-dA)n · (dG-dT)n sequences revealed that the sequences differed from each other both in numbers of repeats and in repeat sequence type. Using a set of precise classification rules, the sequences were divided into three categories: perfect repeat sequences without interruptions in the runs of CA or GT dinucleotides (64% of total), imperfect repeat sequences with one or more interruptions in the run of repeats (25%), and compound repeat sequences with adjacent tandem simple repeats of a different sequence (11%). Informativeness of (dC-dA)n · (dG-dT)n markers in the perfect sequence category was found to increase with increasing average numbers of repeats. PIC values ranged from 0 at about 10 or fewer repeats to above 0.8 for sequences with about 24 or more repeats. (dC-dA)n · (dG-dT)n polymorphisms in the imperfect sequence category showed lower informativeness than expected on the basis of the total numbers of repeats. The longest run of uninterrupted CA or GT repeats was found to be the best predictor of informativeness of (dC-dA)n · (dG-dT)n polymorphisms regardless of the repeat sequence category.  相似文献   

5.
6.
We describe an unusual repetitive DNA region located in the 3′ end of the light (L)-strand in the mitochondrial control region of two elephant seal species. The array of tandem repeats shows both VNTR (variable-number tandem repeat) and sequence variation and is absent from 12 compared mammalian species, except for the occurrence in the same location of a distinct repetitive region in rabbit mtDNA and a similar repeat in the harbor seal. The sequence composition and arrangement of the repeats differ considerably between the northern elephant seal (Mirounga angustirostris) and the southern species (M. leonina) despite an estimated divergence time of 1 MY (based on an mtDNA-RNA gene and the nonrepetitive control region). Analysis of repeat sequence relationships within and between species indicate that divergence in sequence and structure of repeats has involved both slippagelike and unequal crossingover processes of turnover, generating very high levels of divergence and heteroplasmy. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

7.
We have shown, in a previous paper, that tandem repeating sequences, especially triplet repeats, play a very important role in gene evolution. This result led to the formulation of the following hypothesis: most of the genomic sequences evolved through everlasting acts of tandem repeat expansions with subsequent accumulation of changes. In order to estimate how much of the observed sequences have the repeat origin we describe the adaptation of a text segmentation algorithm, based on dynamic programming, to the mapping of the ancient expansion events. The algorithm maximizes the segmentation cost, calculated as the similarity of obtained fragments to the putative repeat sequence. In the first application of the algorithm to segmentations of genomic sequences, a significant difference between the natural sequences and the corresponding shuffled sequences is detected. The natural fragments are longer and more similar to the putative repeat sequences. As our analysis shows, the coding sequences allow for repeats only when the size of the repeated words is divisible by three. In contrast, in the non-coding sequences, all repeated word sizes are present. It was estimated, that in Escherichia coli K12 genome, about 35.5% of sequence can be detectably traced to original simple repeat ancestors. The results shed light on the genomic sequence organization, and strongly confirm the hypothesis about the crucial role of triplet expansions in gene origin and evolution.  相似文献   

8.
A DNA fragment containing short tandem repeat sequences (approximately 86-bp repeat) was isolated from a Xenopus laevis cDNA library. Southern blot and in situ hybridization analyses revealed that the repeat was highly dispersed in the genome and was present at approximately 1 million copies per haploid genome. We named this element Xstir (Xenopus short tandemly and invertedly repeating element) after its arrangement in the genome. The majority of the genomic Xstir sequences were digested to monomer and dimer sizes with several restriction enzymes. Their sequences were found to be highly homogeneous and organized into tandem arrays in the genome. Alignment analyses of several known sequences showed that some of the Xstir-like sequences were also organized into interspersed inverted repeats. The inverted repeats consisted of an inverted pair of two differently modified Xstirs separated by a short insert. In addition, these were framed by another novel inverted repeat (Xstir-TIR). The Xstir-TIR sequence was also found at the ends of tandem Xstir arrays. Furthermore, we found that Xstir-TIR was linked to a motif characterizing the T2 family which belonged to a vertebrate MITE (miniature inverted-repeat transposable element) family, suggesting the importance of Xstir-TIR for their amplification and transposition. The present study of 11 anuran and 2 urodele species revealed that Xstir or Xstir-like sequences were extensively amplified in the three Xenopus species. Genomic Xstir populations of X. borealis and X. laevis were mutually indistinguishable but significantly different from that of X. tropicalis. Received: 5 April 2000 / Accepted: 3 August 2000  相似文献   

9.
As a common feature of eukaryotic proteins, tandem amino acid repeat has been studied extensively in both animal and plant proteins. Here, a comparative analysis focusing on the proteins having tandem repeats was conducted in eight microsporidia, including four mammal‐infecting microsporidia (Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitozoon hellem and Encephalitozoon bieneusi) and four insect‐infecting microsporidia (Nosema apis, Nosema ceranae, Vavraia culicis and Nosema bombycis). We found that the proteins with tandem repeats were abundant in these species. The quantity of these proteins in insect‐infecting microsporidia was larger than that of mammal‐infecting microsporidia. Additionally, the hydrophilic residues were overrepresented in the tandem repeats of these eight microsporidian proteins and the amino acids residues in these tandem repeat sequences tend to be encoded by GC‐rich codons. The tandem repeat position within proteins of insect‐infecting microsporidia was randomly distributed, whereas the tandem repeats within proteins of mammal‐infecting microsporidia rarely tend to be present in the N terminal regions, when compared with those present in the C terminal and middle regions. Finally, a hypothetical protein EOB14572 possessing four tandem repeats was successfully characterized as a novel endospore wall protein, which colocalized with polar tube of N. bombycis. Our study provided useful insight for the study of the proteins with tandem repeats in N. bombycis, but also further enriched the spore wall components of this obligate unicellular eukaryotic parasite.  相似文献   

10.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

11.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

12.
13.
A modified genomic self-priming technique was used for rapid isolation of tandem repeats from several Vicia species. Based on homologies of their nucleotide sequences the newly isolated clones were assigned to two repeat families named VicTR-A and VicTR-B. Both families are rich in AT (74%) and are organized as long blocks of tandemly repeated units. The VicTR-A repeats are characterized by a monomer size of 69 bp, whereas the VicTR-B repeat monomer is about 38 bp long, and the two families do not share significant sequence homology. VicTR sequences show different degrees of amplification (up to 106–107 copies/haploid genome) in individual Vicia species and are not amplified in other legumes. The abundances of these repeats do not correlate with genome sizes but are similar in species that belong to the same taxonomic section within the genus Vicia. Primed in situ (PRINS) labeling of metaphase chromosomes of V. pannonica revealed that VicTR-A sequences are located predominantly in the telomeric regions of the short arms of all chromosomes. In contrast, labeling of VicTR-B repeats in V. sativa resulted in mainly intercalary bands of various intensities and only weak telomeric signals. Received: 15 December 1999 / Accepted: 8 March 2000  相似文献   

14.
Despite the collective efforts of the international community to sequence the complete rice genome, telomeric regions of most chromosome arms remain uncharacterized. In this report we present sequence data from subtelomere regions obtained by analyzing telomeric clones from two 8.8 × genome equivalent 10-kb libraries derived from partial restriction digestion with HaeIII or Sau3AI (OSJNPb HaeIII and OSJNPc Sau3AI). Seven telomere clones were identified and contain 25–100 copies of the telomere repeat (CCCTAAA)n on one end and unique sequences on the opposite end. Polymorphic sequence-tagged site markers from five clones and one additional PCR product were genetically mapped on the ends of chromosome arms 2S, 5L, 10S, 10L, 7L, and 7S. We found distinct chromosome-specific telomere-associated tandem repeats (TATR) on chromosome 7 (TATR7) and on the short arm of chromosome 10 (TATR10s) that showed no significant homology to any International Rice Genome Sequencing Project (IRGSP) genomic sequence. The TATR7, a degenerate tandem repeat which is interrupted by transposable elements, appeared on both ends of chromosome 7. The TATR10s was found to contain an inverted array of three tandem repeats displaying an interesting secondary folding pattern that resembles a telomere loop (t-loop) and which may be involved in a protective function against chromosomal end degradation.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
An isolate from the fecal samples of children was identified as Bifidobacterium longum. A plasmid isolated from it pBIFA24 was 4,892 bp with three open reading frames, ORFI, ORFII, and ORFIII. ORFI encoded a replication protein involved in a rolling-circle replication mechanism, and three sets of tandem repeat sequences featuring iteron structure were identified. Secondary structure prediction analysis of ORFII suggested it was a transmembrane protein. ORFIII showed high amino acid sequence identity with some mobilization proteins and contained an oriT sequence.  相似文献   

16.
Brachycome dichromosomatica is an Australian native daisy that has two pairs of A chromosomes and up to three B chromosomes in some populations. A putative B-specific tandem repeat DNA sequence (Bd49) was isolated previously. Here we describe further characterisation of this sequence and investigate its possible origin. Southern analysis showed that all individual B chromosomes examined have highly methylated tandem repeats of Bd49 but differences in banding pattern for distinct B isolates suggested that the sequence is in a state of flux. Using in situ hybridisation, the sequence was shown to be located at the centromeric region of the B chromosome. Southern analysis of genomic DNA with Bd49 demonstrated that multiple copies of the sequence exist in the genomes of B. eriogona, B. ciliaris, B. segmentosa and B. multifida (none of which have B chromosomes) whereas other species tested (including 0B plants of B. dichromosomatica and 0B B. curvicarpa and B. dentata) have few or no copies. Genomic clones and Bd49-like sequences derived by the polymerase chain reaction (PCR) were obtained from five species but determination of phylogenetic relationships within the genus and inference as to the possible origin of the B chromosome were problematic because of extensive intragenomic heterogeneity of the sequences.  相似文献   

17.
18.
Complete sequence determination of the brachiopod Lingula anatina mtDNA (28,818 bp) revealed an organization that is remarkably atypical for an animal mt-genome. In addition to the usual set of 37 animal mitochondrial genes, which make up only 57% (16,555 bp) of the entire sequence, the genome contains lengthy unassigned sequences. All the genes are encoded in the same DNA strand, generally in a compact way, whereas the overall gene order is highly divergent in comparison with known animal mtDNA. Individual genes are generally longer and deviate considerably in sequence from their homologues in other animals. The genome contains two major repeat regions, in which 11 units of unassigned sequences and six genes (atp8, trnM, trnQ, trnV, and part of cox2 and nad2) are found in repetition, in the form of nested direct repeats of unparalleled complexity. One of the repeat regions contains unassigned repeat units dispersed among several unique sequences, novel repetitive structure for animal mtDNAs. Each of those unique sequences contains an open reading frame for a polypeptide between 80 and 357 amino acids long, potentially encoding a functional molecule, but none of them has been identified with known proteins. In both repeat regions, tRNA genes or tRNA gene-like sequences flank major repeated units, supporting the view that those structures play a role in the mitochondrial gene rearrangements. Although the intricate repeated organization of this genome can be explained by recurrent tandem duplications and subsequent deletions mediated by replication errors, other mechanisms, such as nonhomologous recombinations, appear to explain certain structures more easily.  相似文献   

19.
Citrus greening (huanglongbing) is the most destructive citrus disease worldwide. The disease is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ has the widest distribution. ‘Ca. L. asiaticus’ is commonly transmitted by a phloem-feeding insect vector, the Asian citrus psyllid Diaphorina citri. A previous study showed that isolates of ‘Ca. L. asiaticus’ were clearly differentiated by variable number of tandem repeat (VNTR) profiles at four loci in the genome. In this study, the VNTR analysis was further validated by assessing the stability of these repeats after multiplication of the pathogen upon host-to-host transmission using a ‘Ca. L. asiaticus’ strain from Japan. The results showed that some tandem repeats showed detectable changes after insect transmission. To our knowledge, this is the first report to demonstrate that the repeat numbers VNTR 002 and 077 of ‘Ca. L. asiaticus’ change through psyllid transmission. VNTRs in the recipient plant were apparently unrelated to the growing phase of the vector. In contrast, changes in the number of tandem repeats increased with longer acquisition and inoculation access periods, whereas changes were not observed through psyllid transmission after relatively short acquisition and inoculation access periods, up to 20 and 19 days, respectively.  相似文献   

20.

Background

Polymorphic tandem repeat typing is a new generic technology which has been proved to be very efficient for bacterial pathogens such as B. anthracis, M. tuberculosis, P. aeruginosa, L. pneumophila, Y. pestis. The previously developed tandem repeats database takes advantage of the release of genome sequence data for a growing number of bacteria to facilitate the identification of tandem repeats. The development of an assay then requires the evaluation of tandem repeat polymorphism on well-selected sets of isolates. In the case of major human pathogens, such as S. aureus, more than one strain is being sequenced, so that tandem repeats most likely to be polymorphic can now be selected in silico based on genome sequence comparison.

Results

In addition to the previously described general Tandem Repeats Database, we have developed a tool to automatically identify tandem repeats of a different length in the genome sequence of two (or more) closely related bacterial strains. Genome comparisons are pre-computed. The results of the comparisons are parsed in a database, which can be conveniently queried over the internet according to criteria of practical value, including repeat unit length, predicted size difference, etc. Comparisons are available for 16 bacterial species, and the orthopox viruses, including the variola virus and three of its close neighbors.

Conclusions

We are presenting an internet-based resource to help develop and perform tandem repeats based bacterial strain typing. The tools accessible at http://minisatellites.u-psud.fr now comprise four parts. The Tandem Repeats Database enables the identification of tandem repeats across entire genomes. The Strain Comparison Page identifies tandem repeats differing between different genome sequences from the same species. The "Blast in the Tandem Repeats Database" facilitates the search for a known tandem repeat and the prediction of amplification product sizes. The "Bacterial Genotyping Page" is a service for strain identification at the subspecies level.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号