首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Death receptor 5 (DR5) is a death domain-containing transmembrane receptor that triggers apoptosis upon binding to its ligand or when overexpressed. Its expression is induced by certain small molecule drugs, including celecoxib, through mechanisms that have not been fully elucidated. The current study has revealed a novel ERK/ribosomal S6 kinase (RSK)-dependent mechanism that regulates DR5 expression primarily using celecoxib as a DR5 inducer. Both C/EBP homologous protein (CHOP) and Elk1 are required for celecoxib-induced DR5 expression based on promoter deletion and mutation analysis and siRNA-mediated gene silencing results. Co-expression of both CHOP and Elk1 exhibited enhanced effects on increasing DR5 promoter activity and DR5 expression, indicating that CHOP and Elk1 co-operatively regulate DR5 expression. Because Elk1 is an ERK-regulated protein, we accordingly found that celecoxib increased the levels of phosphorylated ERK1/2, RSK2, and Elk1. Inhibition of either ERK signaling with a MEK inhibitor or ERK1/2 siRNA, or RSK2 signaling with an RSK2 inhibitor or RSK2 siRNA abrogated DR5 up-regulation by celecoxib as well as other agents. Moreover, these inhibitions suppressed celecoxib-induced CHOP up-regulation. Thus, ERK/RSK-dependent, CHOP and Elk1-mediated mechanisms are critical for DR5 induction. Additionally, celecoxib increased CHOP promoter activity in an ATF4-dependent manner, and siRNA-mediated blockade of ATF4 abrogated both CHOP induction and DR5 up-regulation, indicating that ATF4 is involved in celecoxib-induced CHOP and DR5 expression. Collectively, we conclude that small molecules such as celecoxib induce DR5 expression through activating ERK/RSK signaling and subsequent Elk1 activation and ATF4-dependent CHOP induction.  相似文献   

2.
The histamine H(1) receptor (H1R) gene is up-regulated in patients with allergic rhinitis. However, the mechanism and reason underlying this up-regulation are still unknown. Recently, we reported that the H1R expression level is strongly correlated with the severity of allergic symptoms. Therefore, understanding the mechanism of this up-regulation will help to develop new anti-allergic drugs targeted for H1R gene expression. Here we studied the molecular mechanism of H1R up-regulation in HeLa cells that express H1R endogenously in response to histamine and phorbol 12-myristate 13-acetate (PMA). In HeLa cells, histamine stimulation caused up-regulation of H1R gene expression. Rottlerin, a PKCδ-selective inhibitor, inhibited up-regulation of H1R gene expression, but Go6976, an inhibitor of Ca(2+)-dependent PKCs, did not. Histamine or PMA stimulation resulted in PKCδ phosphorylation at Tyr(311) and Thr(505). Activation of PKCδ by H(2)O(2) resulted in H1R mRNA up-regulation. Overexpression of PKCδ enhanced up-regulation of H1R gene expression, and knockdown of the PKCδ gene suppressed this up-regulation. Histamine or PMA caused translocation PKCδ from the cytosol to the Golgi. U0126, an MEK inhibitor, and DPQ, a poly(ADP-ribose) polymerase-1 inhibitor, suppressed PMA-induced up-regulation of H1R gene expression. These results were confirmed by a luciferase assay using the H1R promoter. Phosphorylation of ERK and Raf-1 in response to PMA was also observed. However, real-time PCR analysis showed no inhibition of H1R mRNA up-regulation by a Raf-1 inhibitor. These results suggest the involvement of the PKCδ/ERK/poly(ADP-ribose) polymerase-1 signaling pathway in histamine- or PMA-induced up-regulation of H1R gene expression in HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号