首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.  相似文献   

2.
A cDNA clone encoding a sesquiterpene synthase, (+)-germacrene D synthase, has been isolated from ginger (Zingiber officinale). The full-length cDNA (AY860846) contains a 1650-bp open reading frame coding for 550 amino acids (63.8kDa) with a theoretical pI=5.59. The deduced amino acid sequence is 30-46% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a major product, (+)-germacrene D (50.2% of total sesquiterpenoids produced) and a co-product, germacrene B (17.1%) and a number of minor by-products. The optimal pH for the recombinant enzyme is around 7.5. Substantial (+)-germacrene D synthase activity is observed in the presence of Mg2+, Mn2+, Ni2+ or Co2+, while the enzyme is inactive when Cu2+ or Zn2+ is used. The Km- and kcat-values are 0.88 microM and 3.34 x 10(-3) s(-1), respectively. A reaction mechanism involving a double 1,2-hydride shift has been established using deuterium labeled substrates in combination with GC-MS analysis.  相似文献   

3.
4.
5.
Various species of "Streptomyces," "Aspergillus," "Rhodotorula," "Brevilegnia," "Syncephalastrum," and "Stysanus" were found to transform precocene II to three major metabolites. These major biotransformation products were isolated from a preparative-scale incubation of precocene II with Streptomyces griseus and were conclusively identified as (-)cis- and (+)trans-precocene II-3,4-dihydrodiols and (+)-3-chromenol. 18O2 incorporation studies indicated the involvement of a monooxygenase enzyme system in precocene II transformation by S. griseus. A mechanism is proposed for the formation of (+)-3-chromenol.  相似文献   

6.
Recombinant pentalenene synthase, a 42.5-kDa sesquiterpene cyclase originally isolated from Streptomyces UC5319 and cloned in Escherichia coli, has been crystallized in space group P6(3) with unit cell dimensions a = b = 183.5 A and c = 56.5 A. Hexagonal prismatic crystals, approximately 0.2 x 0.2 x 0.3 mm, diffract to approximately 2.9 A resolution using monochromatic synchrotron radiation. From the universal (and achiral) building block, farnesyl pyrophosphate, pentalenene synthase catalyzes the formation of four stereocenters in the construction of the three fused five-membered rings of pentalenene; this novel sesquiterpene is a precursor to the pentalenolactone family of antibiotics.  相似文献   

7.
Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-β-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-β-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-β-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-β-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-β-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-β-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction.  相似文献   

8.
Various species of "Streptomyces," "Aspergillus," "Rhodotorula," "Brevilegnia," "Syncephalastrum," and "Stysanus" were found to transform precocene II to three major metabolites. These major biotransformation products were isolated from a preparative-scale incubation of precocene II with Streptomyces griseus and were conclusively identified as (-)cis- and (+)trans-precocene II-3,4-dihydrodiols and (+)-3-chromenol. 18O2 incorporation studies indicated the involvement of a monooxygenase enzyme system in precocene II transformation by S. griseus. A mechanism is proposed for the formation of (+)-3-chromenol.  相似文献   

9.
10.
11.
12.
2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site.  相似文献   

13.
This paper shows the chemical constituents of the essential oils from the leaves of Aglaia odorata Lout. grown in Zhangzhou. By the aid of GC-MS-DS., IR., the following components have been separated and identified: linalool, hendecane, α-copaene, β-elemene, β-caryophyllene, α-humulene, aromadendrene, γ-cadinene, α-himachalene, δ-cadinene, β-guaiene, γ-gurjunene, γ-elemene, humulene epoxide-Ⅰ, humulene epoxide-Ⅱ, β-elemene-9β-ol, β-humulene-7-ol, nerolidol, earyophyllenol-1, farnesol, β-santalol, elemol. This will provide scientific basis for further develophment of the essential oils of the plants of Aglaia Lour.  相似文献   

14.
15.
The complex sterol mixture isolated from A, nigra was found to contain a low level of Δ4-3-keto steroids, 5β-stanols and 4α-methyl sterols in addition to regular (4-demethyl) sterols. The following new marine sterols were isolated and identified using MS and 360 MHz NMR: 5β-cholest-22E-en-3β-ol, 24S-methyl-5β-cholest-22E-en-3β-ol, 24-methylene-5β-cholestan-3β-ol, both epimers at C-24 of 4α-methyl-24-ethyl-5α-cholest-22E-en-3β-ol, 4α, 22ξ, 23ξ-(or 24ξ-)trimethyl-5α-cholest-8(14)-en-3β-ol and (22S, 23S, 24S)-4α-24-dimethyl-22, 23-methylene-5α-cholestan-3β-ol. The latter sterol and 23-demethylgorqosterol have opposite configurations at C-22, C-23, and C-24; the Δ8(14) sterol has an unprecedented side chain.  相似文献   

16.
Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6-7 double bond into the 7-8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns.  相似文献   

17.
Sorghum (Sorghum bicolor) plants damaged by insects emit a blend of volatiles, predominantly sesquiterpenes, that are implicated in attracting natural enemies of the attacking insects. To characterize sesquiterpene biosynthesis in sorghum, seven terpene synthase (TPS) genes, SbTPS1 through SbTPS7, were identified based on their evolutionary relatedness to known sesquiterpene synthase genes from maize and rice. While SbTPS6 and SbTPS7 encode truncated proteins, all other TPS genes were determined to encode functional sesquiterpene synthases. Both SbTPS1 and SbTPS2 produced the major products zingiberene, β-bisabolene and β-sesquiphellandrene, but with opposite ratios of zingiberene to β-sesquiphellandrene. SbTPS3 produced (E)-α-bergamotene and (E)-β-farnesene. SbTPS4 formed (E)-β-caryophyllene as the major product. SbTPS5 produced mostly (E)-α-bergamotene and (Z)-γ-bisabolene. Based on the genome sequences of sorghum, maize and rice and the sesquiterpene synthase genes they contain, collinearity analysis identified the orthologs of sorghum sesquiterpene synthase genes, except for SbTPS4, in maize and rice. Phylogenetic analysis implied that SbTPS1, SbTPS2 and SbTPS3, which exist as tandem repeats, evolved as a consequence of local gene duplication in a lineage-specific manner. Structural modeling and site-directed mutagenesis experiments revealed that three amino acids in the active site play critical roles in defining product specificity of SbTPS1, SbTPS2, SbTPS3 and their orthologs in maize and rice. The naturally occurring functional variations of sesquiterpene synthases within and between species suggest that multiple mechanisms, including lineage-specific gene duplication, subfunctionalization, neofunctionalization and pseudogenization of duplicated genes, have all played a role in the dynamic evolution of insect-induced sesquiterpene biosynthesis in grasses.  相似文献   

18.
The hydrodistillation products of the liverworts Marsupella emarginata, M. aquatica and M. alpina were investigated by spectroscopic methods. A number of new compounds could be isolated by preparative gas chromatography (GC) and identified by spectroscopic techniques including GC-mass spectrometry, NMR and chemical correlations in conjunction with enantioselective GC. From M. emarginata, in addition to many known compounds, the sesquiterpene hydrocarbon (-)-7-epi-eremophila-1(10),8,11-triene (1) and the sesquiterpene derivatives (-)-4-epi-marsupellol (2), (-)-marsupellol acetate (18), (-)-4-epi-marsupellol acetate (4), (+)-5-hydroxymarsupellol acetate (5) and (-)-9-acetoxygymnomitr-8(12)-ene (24) could be identified. In M. aquatica the sesquiterpene hydrocarbons (-)-myltayl-8(12)-ene (7), ent-(+)-amorpha-4,11-diene (8), (-)-amorpha-4,7(11)-diene (9), the sesquiterpene alcohol (+)-9-hydroxyselina-4,11-diene (10) and (-)-2-acetoxyamorpha-4,7(11)-diene (11) were identified. In M. alpina (-)-trans-selina-4(15),11-dien-5-ol (12), (+)-8,9-epoxyselina-4,11-diene (13) and (+)-cis-selina-4(15),11-dien-5-ol (14) were found as new natural products.  相似文献   

19.
20.
Albaflavenone, a tricyclic sesquiterpene antibiotic, is biosynthesized in Streptomyces coelicolor A3(2) by enzymes encoded in a two-gene operon. Initially, sesquiterpene cyclase catalyzes the cyclization of farnesyl diphosphate to the terpenoid epi-isozizaene, which is oxidized to the final albaflavenone by cytochrome P450 (CYP)170A1. Additionally, this CYP is a bifunctional enzyme, being able to also generate farnesene isomers from farnesyl diphosphate, owing to a terpene synthase active site moonlighting on the CYP molecule. To explore the functionality of this operon in other streptomycetes, we have examined culture extracts by GC/MS and established the presence of albaflavenone in five Streptomyces species. Bioinformatics examination of the predicted CYP170 primary amino acid sequences revealed substitutions in the CYP terpene synthase active site. To examine whether the terpene synthase site was catalytically active in another CYP170, we characterized the least related CYP170 orthologue from Streptomyces albus (CYP170B1). Following expression and purification, CYP170B1 showed a normal reduced CO difference spectrum at 450 nm, in contrast to the unusual 440-nm peak observed for S. coelicolor A3(2) CYP170A1. CYP170B1 can catalyze the conversion of epi-isozizaene to albaflavenone, but was unable to catalyze the conversion of farnesyl diphosphate to farnesene. Molecular modeling with our crystal structure of CYP170A1 suggests that the absence of key amino acids for binding the essential terpene synthase cofactor Mg(2+) may be the explanation for the loss of CYP170B1 bifunctionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号