首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have reported earlier the isolation of two recessive, serum- and anchorage-dependent revertants (R116 and R260) from a c-H-ras oncogene-transformed NIH 3T3 line. In both revertants, the oncogene was fully expressed and fusion of either revertant with (untransformed) NIH 3T3 cells, or of the two revertants with one another, resulted in transformed progeny. These, and other data, indicated that the transforming activity of the oncogene was impaired in the two revertants in consequence of defects in distinct genes needed to mediate this activity. We report here that neither revertant could be re-transformed by the K-ras or N-ras oncogene (though they could be re-transformed by several other oncogenes). The two revertants turned out to be tumorigenic in nude mice (though less so than the parental transformed cells). The tumor cells, as recovered, formed foci and had a transformed morphology and a greatly diminished serum and anchorage dependence. Growth of the cells in culture (for 20 passages) resulted in their regaining the characteristics (i.e., anchorage and serum dependence) of cultured R116 and R260 cells. Proliferation of the cells in nude mice was not accompanied by a change in the level of ras oncogene expression or in gene amplification, at least as manifested in the lack of appearance of double-minute chromosomes. The addition of the growth factors TGF alpha and beta to the medium of either revertant did not support anchorage-independent growth.  相似文献   

3.
We recently developed rat fibroblast cell lines that stably overproduce high levels of the beta 1 form of protein kinase C (PKC). These cells display several disorders in growth control and form small microscopic colonies in agar. In the present study we demonstrate that one of these cell lines, R6-PKC3, is extremely susceptible to transformation by an activated human bladder cancer c-H-ras oncogene (T24). Compared with control cell line R6-C1, T24-transfected R6-PKC3 cells yielded a 10-fold increase in the formation of large colonies in agar. Cell lines established from these colonies displayed a highly transformed morphology, expressed the T24-encoded p21 ras protein, continued to express high levels of PKC, and were highly tumorigenic in nude mice. These results provide genetic evidence that PKC mediates some of the effects of the c-H-ras oncogene on cell transformation. Data are also presented suggesting that optimum synergistic effects between c-H-ras and PKC require critical levels of their respective activities. These findings may be relevant to the process of multistage carcinogenesis in tissues containing cells with an activated c-H-ras oncogene.  相似文献   

4.
Crystallization of human c-H-ras oncogene products   总被引:1,自引:0,他引:1  
There is compelling evidence that cancer develops as a consequence of genetic changes (probably multiple) in some members of a selected set of cellular genes. DNA isolated from a variety of tumors, but not normal tissues, possesses the ability to malignantly transform non-tumorigenic cells. Many oncogenes responsible for such transformation have been isolated from transformed cell lines and animal and human tumors induced spontaneously, by virus, by chemical, or by radiation. The most commonly found transforming genes isolated from human tumor cells by DNA transfection assay are the ras gene family (c-H-ras, c-K-ras and N-ras). We report crystallization of several human c-H-ras oncogene proteins.  相似文献   

5.
Site-directed mutagenesis of the conserved sequence motifs of p21 generated a group of mutant p21s defective in GTP binding. Some of these mutants were highly transforming, whereas others were transformation defective. Among the latter group, we found two mutants, derived from the v-H-ras oncogene by substituting the asparagine-116 with tyrosine and isoleucine, that exhibited a trans-dominant activity of suppressing the transformed phenotype of NIH3T3 cells induced by a long terminal repeat-linked c-H-ras and a wild-type v-H-ras. They caused reduction of the colony-forming efficiency in soft agar (78% in c-ras-transformed cells; 55% in v-ras cells) and morphological reversion of ras transformants. Subclones of revertants expressed a great excess of mutant p21 relative to the c-ras p21 present in these cells. These mutants were not lethal to NIH3T3 cells. Apparently, defective proteins encoded by suppressor mutants sequestered vital targets for ras function. Suppressor mutants also induced morphological reversion of NIH3T3 cells transformed by src, fes/flp, sis, and fms oncogenes, suggesting that these oncogenes function upstream to ras in the signaling pathways. Cells transformed by mos and a chemical carcinogen were unaffected.  相似文献   

6.
Persistent revertants have been generated from NIH 3T3 cells transformed by an activated human Ha-ras gene after short-term gamma interferon treatment in the presence of the cardiac aminoglycoside ouabain. Normal fibroblastlike morphology and anchorage dependence are restored in revertants. Tumorigenicity in nude mice is abolished. The revertants continue to express high steady-state levels of the ras oncogene. Partial retransformation of reverted cells is induced after 5-azacytidine treatment or after infection with retrovirus vectors carrying the v-abl, v-fes, v-myc, or v-src oncogene. The revertants resist the transforming activities of the v-Ha-ras and v-mos oncogenes.  相似文献   

7.
NIH 3T3 cells transformed in vitro with the c-H-ras oncogene were subcloned. The resulting subclones were assayed for in vivo tumorigenicity in nude and in immunocompetent mice. The response of two high tumorigenic and two low tumorigenic clones to mediators of natural immunity was analyzed. The clones did not differ in sensitivity to NK cell-mediated lysis. However, compared to low tumorigenic clones, the high tumorigenic ones had a down-regulated expression of a membrane determinant recognized by a certain monoclonal naturally occurring antibody. The determinants recognized by other monoclonal naturally occurring antibodies available in the laboratory were equally expressed on the high and low tumorigenic clones. The high tumorigenic cells showed an increased resistance to cytotoxicity mediated by lymphotoxin. These results suggest that naturally occurring antibodies and lymphotoxin may participate in controlling the tumorigenicity of transformed cells. The high tumorigenic clones but not the low tumorigenic ones contained a novel 3.5-kb ras mRNA.  相似文献   

8.
Feulgen-DNA content, nuclear phenotypes, and levels of chromatin condensation were evaluated by image analysis in NIH/3T3 cells transformed with the c-H-ras oncogene of T24 cells. Three nuclear phenotypes, differing from those of untransformed control cells and defined in terms of patterns of chromatin condensation, were demonstrated microspectrophotometrically for the tumor cells. Polyploidy could only be observed in nuclei with extensive and deeply stained areas covered with condensed chromatin, i.e., only in a small fraction of the tumor cell nuclear population. The increased chromatin condensation that appeared with cell transformation affected the euchromatin zones. The image analysis provided data that, compared with those obtained in other situations involving cell transformation, could be relevant to the understanding of changes in chromatin supraorganization related to tumorigenesis and to tumor cell diagnosis.  相似文献   

9.
Rat embryo fibroblasts and liver epithelial cell lines normally express two isoforms of protein kinase C (PKC), PKC alpha and PKC epsilon. Derivatives of these cells transformed by an activated human c-H-ras oncogene display a several-fold increase in expression of PKC alpha and a concomitant decrease in PKC epsilon, at both the protein and mRNA levels. Similar changes are seen when the transformed phenotype is induced by Zn2+ in cells carrying the activated ras oncogene under the control of a metallothionein promoter. Studies using cell lines that express very high levels of PKC beta 1, studies using a specific inhibitor of PKC (CGP 41251), and studies in which PKC activity is down-regulated by treatment with a phorbol ester tumor promoter provide evidence that the effects of the ras oncogene on the expression of PKC alpha and PKC epsilon are mediated mainly through a PKC-independent pathway. The present results provide the first evidence that transformation of cells by an oncogene can alter the relative expression of specific isoforms of PKC. It is possible that these changes contribute to the malignant phenotype of these cells.  相似文献   

10.
H Paterson  B Reeves  R Brown  A Hall  M Furth  J Bos  P Jones  C Marshall 《Cell》1987,51(5):803-812
To investigate whether the activated N-ras oncogene of HT1080 human fibrosarcoma cells contributes to the expression of the transformed phenotype, we have isolated flat revertants. In two independent revertant lines, an increase in chromosomal ploidy occurred without a concomitant increase in the number of copies of the N-ras transforming allele. Immunoprecipitation confirms that the level of the mutant N-ras p21 gene product in the revertants is correspondingly lower than in HT1080. Analysis of sporadic tumors derived from the revertant cells reveals an increased dosage of the transforming allele. The revertants also retransform after transfection of cloned activated ras oncogenes. These results imply direct participation of an N-ras oncogene in maintaining the transformed phenotype of a human tumor cell line.  相似文献   

11.
The nuclear phenotypes of Feulgen-stained NIH/3T3 cells transformed with 4-nitroquinoline 1-oxide (4NQO) treated, human breast epithelial cell (HBEC) DNA were studied by scanning microspectrophotometry and image analysis and compared with data obtained for nontransformed cells and for NIH/3T3 cells under ras oncogene transfecting situations. The Feulgen-DNA content of the individual nuclei (NQ1, NQ2, and NQ3 phenotypes) of the transformed cells was found not to be deeply affected, although presence of chromatin structures resembling double minutes could be verified in part of the metaphases of the transformed cells. On the other hand, the chromatin supraorganization of these cells showed some changes involving increased (NQ2, NQ3) or decreased (NQ1) levels of condensation. The changes in chromatin packing states, however, were of small magnitude compared with those reported for NIH/3T3 cells transfected with a c-H-ras oncogene or an N-ras-containing MCF-7 cell DNA. It was assumed that the transformation of the NIH/3T3 cells is not always necessarily accompanied by high levels of chromatin condensation. The transformation of the NIH/3T3 cells induced by the 4NQO-treated HBEC DNA and particularly the changes in chromatin condensation in these transformed cells could not be attributed merely to a ras activation elicited by the carcinogen. It is suggested that a more complex transforming mechanism is involved, probably owing to the fact that a whole genomic DNA of the 4NQO-treated HBEC has been used for transfection.  相似文献   

12.
Revertants of Kirsten sarcoma virus transformed nonproducer BALB/3T3 cells (KA31 cells) were isolated after exposing the transformed cells to 5-fluorodeoxyuridine at high cell density, or when suspended in methylcellulose. Revertants were also isolated by treating KA31 cells with the lectin, concanavalin A, which is manyfold more toxic to transformed cells than for normal cells. The revertants resemble BALB/3T3 cells in their morphology and growth characteristics in that they have a low saturation density, fail to grow in 1% calf serum or when suspended in methylcellulose, and cease to synthesize DNA after reaching their saturation density. Infection by murine leukemia virus rescues Kirsten sarcoma virus from only the concanavalin-A-selected variants, though all the revertants are susceptible to infection by leukemia virus. The concanavalin A revertants also become transformed after infection with murine leukemia virus. All the revertants can be transformed by Kirsten sarcoma virus but not by simian virus 40.  相似文献   

13.
Total proteins from a mouse embryo fibroblast cell line NIH/3T3, NIH/3T3 cells transformed by human activated c-Ha-ras (EJ-ras) oncogene (EJ-NIH/3T3), and the two flat revertant cell lines, R1 and R2, were analyzed by two-dimensional gel electrophoresis (IEF and NEPHGE). Several hundred polypeptides were resolved as seen by silver staining. Common alterations in four polypeptide spots were observed in the revertants when compared with NIH/3T3 and EJ-NIH/3T3 cells. In these alterations, a new polypeptide spot p92-5.7 (designated by molecular weight x 10(-3) and pI) was detected only in the revertants and not in NIH/3T3 and EJ-NIH/3T3 cells. Furthermore, the expression level of p92-5.7 seemed to be associated with the flat morphology and the reduced tumorigenicity of the revertants. Polypeptide p92-5.7 was also not detected in the total proteins extracted from BALB/3T3 cells, NIH Swiss mouse primary embryo fibroblasts, NRK (normal rat kidney) cells, and L6 (rat myoblast). Subcellular fractionation of total protein from R1 cells revealed that the p92-5.7 was present in the cytosol. Western blot analysis using an anti-gelsolin antibody demonstrated that the p92-5.7 might be a variant form of gelsolin which is thought to be an actin regulatory protein or a gelsolin-like polypeptide. These results may suggest that the expression of p92-5.7 detected only in the revertants is associated, at least in part, with the reversion. This may be the first demonstration of specific protein expression in the flat revertants.  相似文献   

14.
15.
We report conditions for the efficient growth of NIH 3T3 and BALB/c 3T3 cells cultured in a defined medium supplemented with either platelet-derived growth factor (PDGF) or pituitary-derived fibroblast growth factor (FGF). The oncogenes v-mos, v-src, v-sis, and c-H-ras Val 12 can induce morphological transformation of these cells and can release them from the mitogen requirement for growth, while the oncogene v-fos cannot abrogate the PDGF-FGF requirement. The radically different behavior of normal and transformed NIH 3T3 cells in PDGF-FGF-free defined medium can form the basis of a sensitive new fibroblast transformation assay.  相似文献   

16.
Rat 6 fibroblasts that overproduce protein kinase C beta 1 (R6-PKC3 cells) are hypersensitive to complete transformation by the T24 H-ras oncogene; yet T24 H-ras-transformed R6-PKC3 cells are killed when exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA) (W.-L. W. Hsiao, G. M. Housey, M. D. Johnson, and I. B. Weinstein, Mol. Cell. Biol. 9:2641-2647, 1989). Treatment of an R6-PKC3 subclone that harbors a T24 H-ras gene under the control of an inducible mouse metallothionein I promoter with ZnSO4 and TPA is extremely cytocidal. This procedure was used to isolate rare revertants that are resistant to this toxicity. Two revertant lines, R-1a and ER-1-2, continue to express very high levels of protein kinase C enzyme activity but, unlike the parental cells, do not grow in soft agar. Furthermore, these revertants are resistant to the induction of anchorage-independent growth by the v-src, v-H-ras, v-raf, and, in the case of the R-1a line, v-fos oncogenes. Both revertant lines, however, retain the ability to undergo morphological alterations when either treated with TPA or infected with a v-H-ras virus, thus dissociating anchorage independence from morphological transformation. The revertant phenotype of both R-1a and ER-1-2 cells is dominant over the transformed phenotype in somatic cell hybridizations. Interestingly, the revertant lines no longer induce the metallothionein I-T24 H-ras construct or the endogenous metallothionein I and II genes in response to three distinct agents: ZnSO4, TPA, and dexamethasone. The reduction in activity of metallothionein promoters seen in these revertants may reflect defects in signal transduction pathways that control the expression of genes mediating specific effects of protein kinase C and certain oncogenes in cell transformation.  相似文献   

17.
We isolated a monoclonal antibody that immunoprecipitated two proteins of 22 and 27 kilodaltons (kDa) from nononcogenic adenovirus type 5 early region 1 (E1)-transformed rat cells but not from oncogenic adenovirus type 12 E1-transformed rat cells. In a variety of adenovirus-transformed cells including cells transformed by E1A and the c-H-ras oncogene, we found a perfect, inverse correlation between the presence of these two proteins and the oncogenicity of these cells in syngeneic immunocompetent rats. Characterization of the two proteins revealed that they occur in a large (700-kDa) complex and that the 27-kDa protein is identical to the already known 27-kDa (28-kDa) heat shock protein hsp27. The suppression of the hsp27 protein in oncogenic cells is further demonstrated by the fact that its mRNA is absent even after heat-shock induction.  相似文献   

18.
The spontaneous transfer of drug resistance genes has been shown to take place between cultured mammalian NIH-3T3 cells and occurs with a hierarchy of transfer efficiencies, transformed cells being more efficient than non-transformed cells. This experiment was accomplished by co-cultivating two NIH-3T3 sublines, each transfected by standard plasmid methods with a different drug resistance gene, subjecting the mixed population to double selection by adding both drugs to the mixed cell culture, and isolating single cells which were resistant to both drugs. The genes used were the neo gene and gpt gene which conferred resistance to the drugs G418 and mycophenolic acid, respectively. DNA analysis confirmed the presence of both resistance genes in the cells which were resistant to both drugs. The mechanism of this gene transfer was by cell fusion rather than by chromosomal DNA uptake. The efficiency of gene transfer, as indicated by the number of double-resistant colonies standardized by number of cells cultured, was much higher between two sublines of cells transformed by the EJras oncogene than between one transformed and one non-transformed subline, which in turn was higher than between two non-transformed sublines. The higher efficiency of gene transfer between the transformed cells also occurred when these cells were injected into nude mice, thus demonstrating that the same process occurred in vivo. It would appear that drug resistance genes may be transferred spontaneously in cultured mammalian cells by cell fusion, and that transformed cells have a higher efficiency of gene transfer compared to non-transformed cells.  相似文献   

19.
A number of deletion mutants were isolated, including 5', 3', and internal deletions in the 5'-flanking region of the human cellular oncogene related to the Harvey sarcoma virus (c-H-ras), and their transforming activities were examined in NIH 3T3 cells. DNA sequences which could not be detected without losing transforming activity were localized to a relatively short stretch upstream of the region which showed homology to the 5'-flanking region of v-H-ras oncogene. S1 nuclease analysis indicated that there were two clusters of mRNA start sites at positions that were about 1,371 and 1,298 base pairs upstream of the first coding ATG. The minimum region required for promoter function was estimated to be a 51-base-pair-long (or less) DNA segment. The promoter was GC rich (78%) and did not contain the consensus sequences that are usually observed in PolII-directed promoters but contained a GC box within which one of the mRNA start sites was included. In addition, two sets of positive and negative elements seemed to be located between the promoter and the protein-coding region, which appeared to influence positively and negatively, respectively, the efficiency of transformation with the c-H-ras oncogene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号