首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The requirement of bovine heart mitochondrial oligomycin sensitivity conferring protein (OSCP) in conferring dicyclohexylcarbodiimide (DCCD)-sensitivity to membrane-bound F1 was investigated by using OSCP-depleted membrane fraction (UF0) of ATP synthase. The ATPase activity of UF0-F1 was completely insensitive to DCCD while that of UF0-F1-OSCP was inhibited 95% by 16 microM DCCD. Both UF0-F1 and UF0-F1-OSCP complexes bound 5 nmol [14C]DCCD/mg UF0, and all the radioactivity was found to be associated with the DCCD-binding proteolipid. The data suggest that OSCP may be necessary for transmitting not only energy-linked signals, but also signals induced by F0 inhibitory ligands in mitochondrial energy transduction.  相似文献   

2.
Oligomycin sensitivity-conferring protein (OSCP) is a water-soluble subunit of bovine heart mitochondrial H(+)-ATPase (F1-F0). In order to investigate the requirement of OSCP for passive proton conductance through mitochondrial F0, OSCP-depleted membrane preparations were obtained by extracting purified F1-F0 complexes with 4.0 M urea. The residual complexes, referred to as UF0, were found to be deficient with respect to OSCP, as well as alpha, beta, and gamma subunits of F1-ATPase, but had a full complement of coupling factor 6 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting techniques. These UF0 complexes had no intrinsic ATPase activity and were able to bind nearly the same amount of F1-ATPase in the presence of either OSCP or NH4+ ions alone, or a combination of the two. However, the preparations exhibited an absolute dependency on OSCP for conferral of oligomycin sensitivity to membrane-bound ATPase. The passive proton conductance in UF0 proteoliposomes was measured by time-resolved quenching of 9-amino-6-chloro-2-methoxyacridine or 9-aminoacridine fluorescence following a valinomycin-induced K(+)-diffusion potential. The data clearly establish that OSCP is not a necessary component of the F0 proton channel nor is its presence required for conductance blockage by the inhibitors oligomycin or dicyclohexylcarbodiimide. Furthermore, OSCP does not prevent or block passive H+ leakage. Comparisons of OSCP with the F1-F0 subunits from Escherichia coli and chloroplast lead us to suggest that mitochondrial OSCP is, both structurally and functionally, a hybrid between the beta and delta subunits of the prokaryotic systems.  相似文献   

3.
The polypeptides exposed to lipids in the membranous F0 sector of the mitochondrial and Escherichia coli ATP synthases were labelled with radioactive photoreactive lipids. Highly resolving gel electrophoretic conditions were used in order to separate all the eighteen components forming the bovine heart mitochondrial enzyme. The hydrophobic labelling was performed on fully active and inhibitor-sensitive ATP synthases. In the mitochondrial enzyme prepared according to Serrano et al. (1976) [J. Biol. Chem. 251, 2453-2461] seven polypeptides of Mr 30500; 11500; 10500; 10000; 9500; 8500 and 4500 were labelled. The major amount of radioactivity was associated with the 30500-Mr component, which is thought to be the adenine nucleotide carrier. In the preparation of Galante et al., (1979) which almost completely lacks this component [J. Biol. Chem. 254, 12372-12378] nine polypeptides of Mr 25000; 21000; 11500; 10500; 10000; 9500; 9200; 8500 and 4500 were labelled. In the ATPase synthase from E. coli the major amount of labelling was associated with subunit b and only a minor portion with subunit c.  相似文献   

4.
Submitochondrial particles prepared by treatment of mitochondria with ammonia and silicotungstic acid were found to be deficient in coupling factor 6 according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting and had reduced ATP-Pi exchange activity. Requirement of coupling factor 6 for passive proton conductance through mitochondrial F0 was investigated by assaying the ability of depleted particles to sustain NADH-induced proton fluxes as measured by the quenching of 9-amino-6-chloro-2-methoxyacridine fluorescence. The depleted particles themselves showed negligible quenching, but the quenching increased markedly after treating the particles with oligomycin. The data show for the first time that coupling factor 6-depleted complexes have an active proton channel that can be blocked by oligomycin. Therefore, coupling factor 6 is not essential for inhibitor-sensitive proton conductance through mitochondrial F0.  相似文献   

5.
Oligomycin sensitivity conferral protein, in the absence of coupling factor 6 (F6), is able to bind the ATPase to mitochondrial membranes with an apparent association constant of 10(6) M-1. The F6-dependent ATPase binding has an apparent association constant 1 to 2 orders of magnitude lower than that obtained with oligomycin sensitivity conferral protein. The oligomycin sensitivity conferral protein-dependent, membrane-bound ATPase activity is sensitive to rutamycin while the F6-dependent, membrane-bound ATPase activity is insensitive to rutamycin. F1-ATPase and Type II ATPase require F6 in addition to oligomycin sensitivity conferral protein and FB to reconstitute 32Pi-ATP exchange activity in silicotungstic acid particles. This F6 requirement for the 32Pi-ATP exchange is not related to the F6 effect on the ATPase binding. The Type I ATPase and therefore the 26,500-dalton subunit associated with it requires F6 and FB to reconstitute 32Pi-ATP exchange activity in silicotungstic acid particles. Oligomycin sensitivity conferral protein can be interchanged with the 26,500-dalton ATPase binding protein in the binding of the ATPase and the 32Pi-ATP exchange.  相似文献   

6.
The ATP synthase enzyme structure includes two stalk assemblies, the central stalk and the peripheral stalk. Catalysis involves rotation of the central stalk assembly together with the membrane-embedded ring of c-subunits driven by the trans-membrane proton-motive force, while the alpha and beta-subunits of F(1) are prevented from co-rotating by their attachment to the peripheral stalk. In the absence of structures of either the intact peripheral stalk or larger complexes containing it, we are studying its individual components and their interactions to build up an overall picture of its structure. Here, we describe an NMR structural characterisation of F(6), which is a 76-residue protein located in the peripheral stalk of the bovine ATP synthase and is essential for coupling between the proton-motive force and catalysis. Isolated F(6) has a highly flexible structure comprising two helices packed together through a loose hydrophobic core and connected by an unstructured linker. Analysis of chemical shifts, (15)N relaxation and RDC measurements confirm that the F(6) structure is flexible on a wide range of timescales ranging from nanoseconds to seconds. The relationship between this structure for isolated F(6) and its role in the intact peripheral stalk is discussed.  相似文献   

7.
The epsilon-subunit of ATP synthase from bovine heart mitochondria is assembled into the extrinsic membrane sector, F1-ATPase. The mature protein is 50 amino acid residues in length and its function is unknown. It is a nuclear gene product that is imported into the organelle. A mixture of 64 oligonucleotides 17 bases long, designed on the basis of the known protein sequence, was synthesized and used as a hybridization probe to isolate a cognate cDNA clone from a bovine library. The DNA sequence of this clone was determined, and the protein sequence of the epsilon-subunit deduced from it agrees exactly with that determined by direct sequence analysis of the protein isolated from bovine hearts. The bovine cDNA was used as a hybridization probe to examine the expression of the epsilon-subunit in various bovine tissues. mRNAs related to the cDNA are found in all of these tissues, and no evidence was obtained of the presence of mRNAs for the epsilon-subunit with similar coding sequences and dissimilar 3' non-coding regions. By hybridization experiments with digests of DNA from cow, man and rat it has been shown that sequences related to the bovine cDNA are present in the genomes of all three species. More than one related sequence was detected in all cases, indicating the presence in all three genomes of more than one gene and/or pseudogenes.  相似文献   

8.
ATP synthase, or F-ATPase, purified from bovine heart mitochondria in the absence of phospholipids is an assembly of 16 different subunits. In the presence of exogenous phospholipids, two additional hydrophobic proteins, a 6.8kDa proteolipid and diabetes associated protein in insulin sensitive tissue (DAPIT), were associated with the purified complex, with DAPIT at sub-stoichiometric levels. Both proteins are conserved in vertebrates and invertebrates, but not in fungi, and prokaryotic F-ATPases do not contain orthologues of either of them. Therefore, their roles are likely to be peripheral to the synthesis of ATP.  相似文献   

9.
Zanotti F  Raho G  Vuolo R  Gaballo A  Papa F  Papa S 《FEBS letters》2000,482(1-2):163-166
A study is presented of the activity and temperature dependence of the ATPase inhibitor protein (IF(1)) from bovine heart mitochondria and of synthetic partial IF(1) peptides. The results show that the IF(1)-(42-58) peptide is the most potent inhibitory domain of IF(1).  相似文献   

10.
Rhodamine 6G inhibited ATP hydrolysis by oligomycin-sensitive ATPase, purified from rat liver mitochondria, in good accord with the dose-response curve for its inhibition of energy transduction of ATP synthesis in mitochondria, but it did not inhibit ATP hydrolysis by purified F1. Rhodamine 6G also inhibited both H+-ejections from mitochondria energized with respiratory substrates and with ATP.

The present findings show that the inhibitory effect of rhodamine 6G on energy transduction is not due to a modification of the transport system for adenine nucleotides, Pi, and respiratory substrates, and that the inhibition sites of rhodamine 6G are on components related with H+-ejection by redox components and also on F0.  相似文献   


11.
Two ATPase inhibitor proteins were isolated together from bovine heart mitochondria by a new procedure; each was purified further. The one inhibitor is a Ca2+-binding protein. It was found to contain 2 cysteine residues/mol as well as threonine and proline residues, all of which the other inhibitor (first isolated by Pullman and Monroy (Pullman, M.E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769] lacks. Its minimal molecular weight was 6390 with 62 amino acid residues/mol, and its isoelectric point was 4.6. Besides differences in size, composition, and response to Ca2+, the two inhibitor proteins also differed in response to sulfhydryl compounds, pH, KCl, and cardiolipin. Inhibition by the two inhibitor proteins was additive. Both cross-reacted with mitochondrial ATPase from rat skeletal muscle. Calmodulin, with or without Ca2+, had no effect on the activity of either inhibitor protein. Antibody to the Ca2+-binding inhibitor protein did not interact with the Pullman-Monroy inhibitor or have any effect on its activity. The antibody interacted with intact submitochondrial particles that contained both inhibitor proteins but not with particles from which only the Ca2+-binding inhibitor had been removed. Clearly, the two inhibitors are distinct immunologically as well as in other properties. The two types of inhibitor protein were also isolated from rat skeletal muscle mitochondria by the new procedure.  相似文献   

12.
13.
E W Yamada  N J Huzel 《Biochemistry》1989,28(25):9714-9718
Submitochondrial particles (A particles) and phosphorylating electron-transport particles (ETPH) were prepared from bovine heart mitochondria. The A particles either were supplemented with or were depleted of the mitochondrial calcium-binding ATPase inhibitor protein (CaBI). The CaBI-depleted A particles still retained the Pullman-Monroy ATPase inhibitor protein (PMI), and the other particles all contained both CaBI and PMI. ATP synthase and ATPase activities of the particles were measured in similar reaction mixtures by luminescence of firefly luciferin-luciferase. Succinate was the respiratory substrate, and the adenylate kinase inhibitor P1, P5-di(adenosine-5') pentaphosphate was obligatory. The ATP synthase activity of CaBI-depleted A particles was 30-40% of that of the A and ETPH particles, and its ATPase activity was 7-8 times greater. Reconstitution of the CaBI-depleted A particles with CaBI restored the original ATP synthase and ATPase activities. ATP synthase activity rose about 1.7-fold when A particles were supplemented with additional CaBI and ATPase activity dropped to 9% of the original. Varying Ca2+ levels had little or no effect on the ATP synthase and ATPase activities of the CaBI-depleted A particles. In contrast, ATP synthase activity of the other particles was decreased by as much as 70% at the optimal Ca2+ concentration of 1 microM, and the ATPase activity of the A and EPTH particles rose concomitantly by 7-8-fold. The ATP synthase and ATPase activities of all the particles in microM Ca2+ became like those of the CaBI-depleted A particles. These changes were reversible; normal activities were restored as Ca2+ concentrations were raised above 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Coupling factor 6 (F6) and mitochondrial ATPase inhibitor were isolated from the rutamycin-sensitive ATPase complex of bovine heart mitochondria by heating and fractionation with ethanol. F6 appeared in acrylamide gel electrophoresis in the presence of sodium dodecylsulfate and urea as a single band corresponding to a molecular weight of 8,000. This protein which is required for the 32Pi-ATP exchange in submitochondrial particles treated with silicotungstate was very sensitive to trypsin.  相似文献   

15.
The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF1 occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme''s rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF1 with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1–60 of bovine IF1 with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme''s stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.  相似文献   

16.
N J Gay  J E Walker 《The EMBO journal》1985,4(13A):3519-3524
Two cDNAs encoding different precursor proteins of the same mature proteolipid subunit of mitochondrial ATP synthase have been cloned from a bovine cDNA library. The hybridisation probe was a mixture of 17-mer oligonucleotides containing 256 discrete sequences. The coding sequences of the two cDNAs differ in 25 silent positions of codons and the 3' non-coding sequences are only weakly related. The precursor sequences, which direct the import of the proteolipid into the mitochondrion, are 61 and 68 amino acids long. They are related to each other in regions which probably are recognition signals for the processing protease. The corresponding genes are expressed differently in various tissues in a way that reflects their embryonic origin.  相似文献   

17.
The rat liver 26,500-dalton ATPase binding protein and beef heart oligomycin sensitivity conferral protein are able to interact with the rat liver Type II ATPase to form discrete complexes. The equilibrium constants for these interactions are similar and each forms a 1:1 complex with the ATPase. The reassociated complex of Type II ATPase and 26,500-dalton ATPase binding protein or of oligomycin sensitivity conferral protein and Type II ATPase has properties similar to that of Type I ATPase. Dimerization of oligomycin sensitivity conferral protein by oxidation with copper phenanthroline chelate abolishes its ability to interact with the Type II ATPase. The isoelectric point and amino acid composition of the 26,500-dalton ATPase binding protein and oligomycin sensitivity conferral protein are similar. The polypeptide patterns produced by cyanogen bromide cleavage indicates a similar but nonidentical pattern to the 26,500-dalton ATPase binding protein and the oligomycin sensitivity conferral protein.  相似文献   

18.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

19.
Inverted membrane vesicles of Gram-positive actinobacteria Streptomyces fradiae, S. lividans, and S. avermitilis have been prepared and membrane-bound F0F1 ATP synthase has been biochemically characterized. It has been shown that the ATPase activity of membrane-bound F0F1 complex is Mg2+-dependent and moderately stimulated by high concentrations of Ca2+ ions (10–20 mM). The ATPase activity is inhibited by N,N′-dicyclohexylcarbodiimide and oligomycin A, typical F0F1 ATPase inhibitors that react with the membrane-bound F0 complex. The assay of biochemical properties of the F0F1 ATPases of Streptomycetes in all cases showed the presence of ATPase populations highly susceptible and insensitive to oligomycin A. The in vitro labeling and inhibitory assay showed that the inverted phospholipid vesicles of S. fradiae contained active membrane-bound Ser/Thr protein kinase(s) phosphorylating the proteins of the F0F1 complex. Inhibition of phosphorylation leads to decrease of the ATPase activity and increase of its susceptibility to oligomycin. The in vivo assay confirmed the enhancement of actinobacteria cell sensitivity to oligomycin after inhibition of endogenous phosphorylation. The sequencing of the S. fradiae genes encoding oligomycin-binding A and C subunits of F0F1 ATP synthase revealed their close phylogenetic relation to the genes of S. lividans and S. avermitilis.  相似文献   

20.
The alpha-subunit of ATP synthase from mitochondria is a major component of the extrinsic membrane sector of the enzyme. It is encoded in nuclear DNA. A family of overlapping complementary DNA clones encoding its precursor has been isolated from a bovine library by using in the first instance a mixture of 128 synthetic oligonucleotides designed on the basis of the known protein sequence, and the sequence of the full-length cDNA has been determined. The deduced protein sequence shows that the alpha-subunit of ATP synthase has a presequence of 43 amino acids that is not present in the mature protein. Presumably it directs the protein into the mitochondrial matrix and is removed during the import process. The encoded protein sequence is also longer by one amino acid at its C-terminal end than the protein isolated from F1-ATPase, but this alanine residue may have been removed artifactually during release of the F1-ATPase particle from the inner mitochondrial membrane. With the exception of one uncertainty caused by an ambiguity at one position in the nucleotide sequence, the mature protein sequence encoded in the cDNA is exactly the same as the sequence determined previously by direct analysis of the protein isolated from bovine heart mitochondria [Walker et al. (1985) J. Mol. Biol. 184, 677-701]. The cDNA sequence differs in 158 nucleotides over a region of alignment of 1097 nucleotides from a partial cDNA for the alpha-subunit that has been isolated from a bovine cDNA derived from liver RNA [Breen (1988) Biochem. Biophys. Res. Commun. 152, 264-269].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号