首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wof‐Washa forest is one of the few remaining dry Afromontane forests in the central plateau of Ethiopia. Woody species composition, structure and regeneration patterns of this forest were studied to generate information essential for formulating feasible management options for the forest. Vegetation data were collected from 64 quadrats of size 20 m × 20 m, 10 m × 10 m and 5 m × 5 m for tree/shrub, sapling and seedling, respectively, laid systematically along transects. A total of 62 woody species belonging to 54 genera and 40 families were recorded. Rosaceae was the most diverse family with five (12.5%) species followed by Anacardiaceae, Euphorbiaceae and Myrsinaceae with three (7.5%) species each. Tree/shrub, sapling and seedling densities were 699, 1178 and 7618.7 individuals/ha. About 56.7% of the importance value index was contributed by Juniperus procera, Maytenus arbutifolia, Podocarpus falcatus and Ilex mitis. Vegetation classification resulted in five plant communities: Ilex mitis – Maytenus obscura, Galiniera saxifraga – Maesa lanceolata, Juniperus procera – Erica arborea, Podocapus falcatus – Allophylus abyssinicus and Pittosporum viridiflorum – Polycias fulva community types. Regeneration status of all the woody plant species was categorized as ‘Good’ (28%), ‘Fair’ (19%), ‘Poor’ (8%), ‘None’ (40%) and ‘New’ (5%).  相似文献   

2.
We analysed patterns of woody species richness in Pinus sylvestris and Fagus sylvatica forests in Catalonia (NE Spain) from forestry inventory databank in relation to climate and landscape structure. Both types of forests are found within the same climatic range, although they have been managed following somewhat different goals. Overall, woody species richness significantly increased when conditions get closer to the Mediterranean ones, with milder temperatures. Differences between the two types of forests arose when comparing the relationship between richness and forest patch size. Woody species richness increased in pine forests with patch size, while the opposite trend was observed in beech forests. This pattern is explained by the different behaviour of structural canopy properties, since leaf area index and canopy cover showed a steeper increase with increasing forest patch size in Fagus forests than in Pinus ones. Accordingly, richness decreased with canopy cover in Fagus plots, but not in Pinus ones. We suggest that these differences would be related to management history, which may have enhanced the preservation of beech stands in larger forest landscape units.  相似文献   

3.
Subalpine forest succession was studied on Mt. Fuji, Japan, where various types of forests in different successional phases occur owing to volcanic action. Ninety stands were subjected to ordination using an index (SI) defined by the relative basal area and the life span of component woody species, and the cover of canopy layer of the sample stands. Two different sequences of sample stands were found. One was from deciduous scrubs, through Larix kaempferi forests and Abies forests, to Tsuga diversifolia forests, and the other from Abies-Tsuga thickets to Abies forests. Through analyses of the forest structure and composition, soil survey and identification of fallen logs, the former sequence was recognized as the primary sere and the latter as a regeneration sere following gap formation. During forest succession, basal area reached a maximum in the seral phase with a multi-layered structure. The Tsuga forests, whose understory is restricted to a moss layer, were regarded as the climax. The death or fall of Tsuga stems resulted in gaps, which were subsequently occupied by Abies-Tsuga thickets. The second Abies forests were distinguished from the ones in the primary sere by the occurrence of Dryopteris and Cacalia and the lack of Rhododendron in the understorey. Both Abies forest types included Tsuga saplings. Thus, a cyclic relation is supposed between Abies and Tsuga.Nomenclature follows Ohwi (1975) and Nakaike (1982) for vascular plants, Iwatsuki & Noguchi (1973) for mosses, Inoue (1981) for hepaticae, Kashiwadani (1981) for lichens, respectively. Abies veitchii, A. mariesii were lumped as Abies spp.I wish to express my sincere gratitude to Prof. Toshio Hamaya, Tokyo, for the cordial guidance and encouragement. I also thank Prof. M. Numata and Dr. M. Ohsawa, Chiba, Prof. K. Okutomi, Tokyo, Dr. K. Suzuki, Tokyo, Dr. M. Suzuki, Kanazawa, and Mr. H. Taoda, Kumamoto, for their valuable advice and discussions.  相似文献   

4.
1. Endemic herbivory can influence forest ecosystem function, but how annual productivity consumption relates to seasonal resource utilisation by folivore guilds remains poorly understood. 2. Monthly changes in leaf damage and foliage traits were monitored in ‘dry’ and ‘wet’Nothofagus pumilio (Fagales: Nothofagaceae) deciduous forests in northern Patagonia, Argentina. Herbivore‐induced leaf abscission was assessed and foliar productivity consumption was measured in the canopy and in litterfall harvests. 3. Seasonal damage ranged from 8% to 32% in dry forest, but remained below 5% in wet forest although foliar quality was higher in the latter. In dry forest, dominant guilds were temporally separated; leaf miners consumed younger foliage in spring to early summer, whereas leaf tiers prevailed in late summer to autumn. In wet forest, damage created by external chewers was concentrated in early summer. 4. Insect damage induced premature leaf abscission, especially in dry forest. Although foliar production in wet forest doubled that in dry forest, the percentage of productivity lost to folivores was higher in dry (14–20%) than in wet (1.2–1.8%) forest. 5. The overall greater impact of herbivory in dry forest canopies countered the expectation that consumption would increase with plant productivity and nutritional quality. Lower temperatures and a shorter growing season are likely to constrain folivory in wet forest stands.  相似文献   

5.
The disturbance regime in mixed-wood forests of eastern Canada is characterized by both natural disturbances including wildfires and insect outbreaks as well as forestry. The understanding of how understorey plant assemblages respond to different disturbances is mostly limited to short-term wildfire-logging comparisons of vascular plants. Here, we compare patterns of species richness and composition of four bryophyte guilds in young forests (approx. 40 years old) regenerating after clear-cut logging, wildfire, and spruce budworm outbreak. In addition, young forests were compared with mature spruce-fir dominated stands (approx. 90 years old). Although similar in overall species richness at the scale of 1,000 m2 all young forest types were compositionally distinct with fewer species than mature forests. Stands developed after spruce budworm outbreaks had the highest canopy cover values and the highest surface area of coarse woody debris. These stands had similar numbers of woody debris species as mature forests and were closest to mature forests in species composition. Wildfire-disturbed sites were dominated by deciduous trees and a high number of treebase species. Finally, young managed forest had the highest number of forest floor bryophytes at the scale of 100 m2 among the three young forest types, but was compositionally far from mature forests in their woody debris flora. In conclusion, young forests regenerating after natural disturbances are distinctly different from young forests regenerated after clear-cutting and if natural disturbances are eliminated certain species (e.g., epixylic and treebase species) might become more restricted to older stands in the landscape.  相似文献   

6.
Aboveground net production rates of the subalpine stone pine (Pinus pumila) forests in central Japan were estimated by the summation method; net production was defined as the sum of annual biomass increment and annual loss due to death. In the two pine stands of different scrub heights, P1 (200 cm) and P2 (140 cm), aboveground biomass reached 177 and 126 ton ha−1, respectively. Leaf biomass was about 14 ton ha−1 in each stand. The estimates of aboveground net production during the 2 year period (1987–1989) averaged 4.1 and 3.7 ton ha−1 y−1 in P1 and P2, respectively, which were at the lowest among the pine forests in the world. Two indices of efficiency of energy fixation, that is, the ratio of net production to the total radiation during a growing season and the ratio of net production to total radiation per unit of leaf weight, were evaluated. Both efficiency indices for the twoP. pumila stands fell in the range obtained for other Japanese evergreen conifer forests. This suggested that the low annual net production of the stone pine stands were mainly due to a limitation in the length of the growing season. The pine forests were also characterized by a small allocation (about 17%) of aboveground net production into biomass increment, in comparison with other evergreen conifer forest types. Annual net carbon gain in theP. pumila forests was suggested to be largely invested in leaf production at the expense of the growth of woody parts.  相似文献   

7.
Secondary forests are an increasingly common feature in tropical landscapes worldwide and understanding their regeneration is necessary to design effective restoration strategies. It has previously been shown that the woody species community in secondary forests can follow different successional pathways according to the nature of past human activities in the area, yet little is known about patterns of herbaceous species diversity in secondary forests with different histories of land use. We compared the diversity and abundance of herbaceous plant communities in two types of Central Amazonian secondary forests—those regenerating on pastures created by felling and burning trees and those where trees were felled only. We also tested if plant density and species richness in secondary forests are related to proximity to primary forest. In comparison with primary forest sites, forests regenerating on non‐burned habitats had lower herbaceous plant density and species richness than those on burned ones. However, species composition and abundance in non‐burned stands were more similar to those of primary forest, whereas several secondary forest specialist species were found in burned stands. In both non‐burned and burned forests, distance from the forest edge was not related to herbaceous density and species richness. Overall, our results suggest that the natural regeneration of herbaceous species in secondary tropical forests is dependent on a site's post‐clearing treatment. We recommend evaluating the land history of a site prior to developing and implementing a restoration strategy, as this will influence the biological template on which restoration efforts are overlaid.  相似文献   

8.
Anthropogenic forests, particularly conifer monocultures, today constitute a large proportion of Central European woodland. Conversion of such forest stands into abundantly structured mixed‐species woodland is within the focus of ecosystem restoration and is considered to affect forest biodiversity. Short‐lived tree species play an important role in such conversion processes and may serve as focal species. However, not much is known about their relationship with forest biodiversity. In this study, the short‐lived tree species, European mountain ash (Sorbus aucuparia L.), European white birch (Betula pendula Roth), Downy birch (B. pubescens Ehrh.), and Glossy buckthorn (Frangula alnus P. Mill.), commonly occurring throughout Central Europe, are investigated with regard to their relationship with plant diversity. The focus is on their occurrences in Scots pine (Pinus sylvestris L.)–dominated forests in the Northeast German lowlands. A significant increase in vascular plant diversity is revealed in stands with the selected species’ presence, in comparison to stands without them. Increase in plant species numbers is highest where the respective species occurs in the tree and/or shrub layer, compared with their presence only in the herb layer. For bryophyte species, there is a less strong inverse relationship. An analysis of different species groups, such as threatened, woody, and typical forest species of higher plants, reveals no decrease in species numbers in these groups if short‐lived tree species are present. It is concluded that short‐lived tree species can be indicators for plant diversity assessment within forest restoration processes. As to causal explanations, effects of differing site conditions, assessed by use of Ellenberg indicator values, are discussed as well as possible active effects of the tree species changing their environment.  相似文献   

9.
Abstract. Patterns of understory colonization by native and naturalized trees and shrubs were evaluated in 4.5-year-old plantations of three exotic tree species, Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala, on a degraded coastal grassland site with reference to overstory composition and understory environmental conditions. 19 secondary forest species were established in the plantation understories (with a total area of 0.52 ha), while no natural regeneration occurred in unplanted, though protected, control areas. The majority of these species (90 %) and the total seedling population (97 %) were zoochorous, indicating the importance of frugivorous bats and particularly birds as facilitators of secondary forest species colonization. Understory species richness and seedling densities were affected significantly by overstory composition, the most abundant regeneration occurring beneath Leucaena and least under Casuarina. Understory colonization rates within mixed-species stands were intermediate between those of single-species stands of the trees comprising their overstories. Significant negative correlations were found between understory species richness and seedling density, and forest floor depth and dry mass, especially for small-seeded ornithochorous species. Higher colonization rates near the peripheries of plantation plots relative to plot interiors were due in part to roosting site preferences by frugivores, particularly bats. The study results indicate that overstory species selection can exert a significant influence on subsequent patterns of colonization by secondary forest species and is an important consideration in the design of plantations for ‘catalyzing’ succession on deforested, degraded sites.  相似文献   

10.
Community assembly rules have been extensively studied, but its association with regional environmental variation and land use history remains largely unexplored. Land use history might be especially important in Mediterranean forests, considering their historical deforestation and recent afforestation. Using forest inventories and historical (1956) and recent (2000) land cover maps, we explored the following hypotheses: 1) woody species assembly is driven by environmental factors, but also by historical landscape attributes; 2) recent forests exhibit lower woody species richness than pre‐existing due to the existence of colonization credits; 3) these credits are modulated by species’ life‐forms and dispersal mechanisms. We examined the association of forest historical type (pre‐existing versus recent) with total species richness and that of diverse life‐forms and dispersal groups, also considering the effects of current environment and past landscape factors. When accounting for these effects, no significant differences in woody species richness were found between forest historical types except for vertebrate‐dispersed species. Species richness of this group was affected by the interaction of forest historical type with distance to coast and rainfall: vertebrate‐dispersed species richness increased with rainfall and distance to the coast in recent forests, while it was higher in dryer sites in pre‐existing forests. In addition, forest historical types showed differences in woody species composition associated to diverse environmental and past landscape factors. In view of these results we can conclude that: 1) community assembly in terms of species richness is fast enough to exhaust most colonization credit in recent Mediterranean forests except for vertebrate‐dispersed species; 2) for these species, colonization credit is affected by the interplay of forest history and a set of proxies of niche and landscape constraints of species dispersal and establishment; 3) woody species assemblage is mostly shaped by the species’ ecological niches in these forests.  相似文献   

11.
Old‐growth forests in the American West typically represent fragments of former, more extensive forests that were subjected to nineteenth and twentieth century land‐clearing activities, such as logging. These present‐day forest fragments are thought to be representative of the former landscape, and thus are capable of serving as living references for guiding restoration of logged forests. Yet how do we determine the extent to which existing old‐growth stands represent the former forest, especially when little of the surrounding original vegetation remains? Historic land surveys conducted prior to significant logging can reconstruct the former forest at the stand level, thereby allowing an analysis of old‐growth patches within the larger historic landscape. This study utilized original Public Land Surveys to assess the applicability of old‐growth stands in Redwood National Park as reference ecosystems. A geographic information system (GIS) and statistical analysis of the nineteenth century forest found that vegetation communities, woody species composition, and ratios of dominant canopy species in unlogged patches were highly representative of the forests that were logged. Significance testing (Ho: μ1 = μ2) revealed p‐values greater than 0.10000 in all measures of community and species composition, except for the higher abundance of oak in present‐day old‐growth (p‐value = 0.0395). The results of this study suggest that the national park should increase efforts to protect old‐growth reference ecosystems from further human impacts, and minimize ongoing degradation from edge effects by prioritizing restoration of adjoining second‐growth forest.  相似文献   

12.
13.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

14.
A global change-induced biome shift in the Montseny mountains (NE Spain)   总被引:12,自引:0,他引:12  
Shifts in plant species and biome distribution in response to warming have been described in past climate changes. However, reported evidence of such shifts under current climate change is still scarce. By comparing current and 1945 vegetation distribution in the Montseny mountains (Catalonia, NE Spain), we report here a progressive replacement of cold‐temperate ecosystems by Mediterranean ecosystems. Beech (Fagus sylvatica) forest has shifted altitudinally upwards by ca. 70 m at the highest altitudes (1600–1700 m). Both the beech forests and the heather (Calluna vulgaris) heathlands are being replaced by holm oak (Quercus ilex) forest at medium altitudes (800–1400 m). This beech replacement has been observed to occur through a progressive isolation and degradation of beech stands. In ‘isolated’ (small and surrounded by holm oaks) beech stands, beech trees are 30% more defoliated, beech recruitment is 41% lower, and holm oak recruitment is three times higher than in ‘continental’ (large and continuous) beech stands. The progressively warmer conditions, complemented by the land use changes (mainly the cessation of traditional land management) are the apparent causes, providing a paradigmatic example of global change affecting distributions of plant species and biomes.  相似文献   

15.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

16.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

17.
ABSTRACT Fleshy fruit is a key food resource for both game and nongame wildlife, and it may be especially important for migratory birds during fall and for resident birds and mammals during winter. Land managers need to know how land uses affect the quantities and species of fruit produced in different forest types and how fruit production varies seasonally and as young stands mature. During June 1999-April 2004, we quantified fleshy fruit abundance monthly in 31 0.1-ha plots in 2 silvicultural treatments: 1) young 2-age stands with low basal area retention, created by shelterwood-with-reserves regeneration cuts (R; harvested 1998–1999); and 2) uncut mature closed-canopy stands (M) in 2 common southern Appalachian, USA, forest types (upland hardwood and cove hardwood [CH] forests). Over the 5-year study period, total dry pulp biomass production was low and relatively constant in both M forest types (x̄ = 0.5-2.0 kg/ha). In contrast, fruit production increased each year in R, and it was 5.0 to 19.6 times greater in R than in M stands beginning 3–5 years postharvest. Two disturbance-associated species, pokeweed (Phytolacca americana) and blackberry (Rubus allegheniensis), produced a large proportion of fruit in R but showed different patterns of establishment and decline. Huckleberry (Gaylussacia ursina) recovered rapidly after harvest and was a major producer in both silvicultural treatments and forest types each year. Several herbaceous species that are not associated with disturbance produced more fruit in CHR. Few species produced more fruit in M than in R. Fruit production by most tree species was similar between R and M, due to fruiting by stump sprouts in R within 1–3 years postharvest. Fruit availability was highest during summer and early fall. American holly (Ilex opaca), sumac (Rhus spp.), and greenbriar (Smilax spp.) retained fruit during winter months but were patchy in distribution. In the southern Appalachians, young recently regenerated stands provide abundant fruit compared to mature forest stands and represent an important source of food for wildlife for several years after harvest. Fruit availability differs temporally and spatially because of differences in species composition, fruiting phenology, and the dynamic process of colonization and recovery in recently harvested stands. Land managers could enhance fruit availability for many game and nongame species by creating or maintaining young stands within forests.  相似文献   

18.
Tsuga canadensis (L.) Carr. forests of the southern Appalachian Mountains are currently facing imminent decline induced by a nonnative insect pest, the hemlock woolly adelgid (Adelges tsugae Annand). To effectively manage these forest systems now and in the future, land managers need baseline data on forest structure and dynamics prior to large-scale Tsuga canadensis mortality. Most of our knowledge concerning the dynamics of Tsuga canadensis forests comes from more northern locations such as the Great Lakes region and New England and, therefore, may not pertain to the ecological systems found within the southern Appalachian Mountains. We examined the structure and canopy dynamics of four Tsuga canadensis forest stands within the Cataloochee watershed, in the far eastern part of Great Smoky Mountains National Park (GSMNP). We characterized the environmental settings and vertical forest layers, as well as the diameter and age-structures of each Tsuga canadensis forest stand. These environmental and structural data showed that there were indeed differences between forest stands with and without successful Tsuga canadensis regeneration. The two forest stands exhibiting successful Tsuga canadensis regeneration were located above 1,000 m in elevation on well-drained, moderately steep slopes and had the greatest canopy openness. Structural data from these two forest stands indicated a history of more continuous Tsuga canadensis regeneration. We also constructed disturbance chronologies detailing the history of canopy response to disturbance events and related these to Tsuga canadensis regeneration within each forest stand. Student t-tests adjusted for unequal variances indicated significant differences in the number of release events per tree between forest stands with and without successful Tsuga canadensis regeneration. While forest stands with successful Tsuga canadensis regeneration were more frequently disturbed by minor to major canopy disturbances, events of moderate intensity were found to be most significant in terms of regeneration. These data will be of value to land managers maintaining stands of Tsuga canadensis where treatment for hemlock woolly adelgid infestation has been successful. In areas where treatment is impractical or unsuccessful, land managers will be able to use these data to restore Tsuga canadensis forests after the wave of hemlock woolly adelgid induced mortality has passed. As of August 2008, Joshua A. Kincaid will be a member of the Environmental Studies program at Shenandoah University in Winchester, Virginia, USA  相似文献   

19.
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management.  相似文献   

20.
Aim New Zealand's cool temperate forests are usually dominated by one or more of the five native taxa of Nothofagus (Nothofagaceae; southern beech), but in certain regions there are sharp boundaries against podocarp–broadleaved forest where Nothofagus is rare or completely absent, either for historical (Pleistocene Glaciation) or climatic/biological (mild superhumid climate and competition) reasons. The dynamics of a Nothofagus boundary was investigated by monitoring disturbance-initiated establishment of isolated stands of N. fusca at the extreme limits of its regional distribution. Location The research was carried out in a regional forest ecotone between Nothofagus forest and podocarp–broadleaved forest in the upper Taramakau Valley, South Island, New Zealand. The survey region straddles a major, active fault system and associated tectonic movements and earthquakes with more distant epicentres have contributed to intermittent canopy disturbance of the local forests. Methods Isolated stands of Nothofagus fusca beyond the limits of continuous Nothofagus forest were investigated during two field surveys, separated by 7–10 years. Changes in population size, stem diameter of individual trees, stand basal area and mean annual diameter increment were calculated for each of fifty-four isolated stands. Types of past and recent disturbance and the probable cause of mortality of trees were noted. Results The total population of fifty-four sample stands, ranging in size from one to > 400 stems, increased by 37.4%, and compound basal area increased by 4.7% between the two surveys. Mean stem diameter growth of isolated stands was lower than expected by empirical data for N. fusca, suggesting reduced wood increment at the limits of its distribution. Tree mortality was 0.8% per year. Fifty-one per cent of the dead stems had died as a consequence of various types of natural disturbance, uproots being more common than snaps and crown breakage. Main conclusions The isolated N. fusca stands preferentially occupy sites likely to experience intermittent disturbance, mostly including disturbance of the soil cover, which facilitates their initial establishment and persistence. Because of causal relationships between mass movement on steep slopes and erosion/deposition of talus fans and river terraces, disturbance-initiated changes in forest composition are observed across a range of different landforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号