首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth-inhibitory concentrations of racemic sn-1(3)-dodecylglycerol inhibit the incorporation of [14C] glycerol into lipids and lipoteichoic acid of Streptococcus mutans BHT and alter the per cent composition of the glycerolipids. Increases in phosphatidic acid and diphosphatidylglycerol (at the expense of phosphatidylglycerol) contribute the most to the change in lipid composition. No cellular lysis occurs under these conditions. Radioactive racemic sn-1(3)-dodecylglycerol is readily taken up by the cell and is metabolized primarily to lysophosphatidic acid and phosphatidic acid with smaller amounts converted to phosphatidylglycerol and diacylglycerol. The accumulation of phosphatidic acid and the loss of viability respond in parallel to different concentrations of dodecylglycerol. An increase in CTP is also observed which together with the increase in phosphatidic acid suggests a possible impairment in the synthesis of CDP-diacylglycerol.  相似文献   

2.
Cultures of Streptococcus mutans BHT grown for at least eight generations in a chemically defined medium containing [1(3)-14C]glycerol, when treated with growth-inhibitory concentrations (0.2 micrograms/ml) of benzylpenicillin (Pen G), produced and excreted increased amounts of lipid and lipoteichoic acid per unit of cells. Cellular lysis was not observed. Compared with untreated controls, lipid excretion increased 15-fold, and lipoteichoic acid excretion increased 6-fold, 4 h after the addition of Pen G. All lipid species showed increased synthesis and excretion after exposure to Pen G. Although the same lipid types were found in both the Pen G-treated and the untreated cultures, the percent composition was altered after treatment with Pen G. The most dramatic example of this was the percentage of intracellular diphosphatidylglycerol found in the Pen G-treated cultures, 22.6%, in contrast to 5.3% found in the untreated cultures.  相似文献   

3.
Abstract Hydrogen fluoride treatment of [14C-glycerol]lipoteichoic acid synthesized by growing Streptococcus faecium ATCC9790 in the presence of 1,3[14C]glycerol produced five radioactive, water-soluble products which were identified by chromatographic and analytical techniques to be tetraglucosyl glycerol, triglucosyl glycerol, diglucosyl glycerol, monoglucosyl glycerol and unsubstituted glycerol. The percent composition of each varied modestly from culture to culture and ranged between 7 and 8% for the tetra-, 20.5 and 31.2% for the tri-, 11.3 to 23.5% for the di-, 20.9 to 26.8% for the mono-, and 23.1 to 34.8% for the unsubstituted glycerol. The same glucosylated glycerol compounds could be obtained in an in vitro reaction in which a 30 000 × g particulate enzyme catalyzed the incorporation of [3H]glucose from UDP [3H]glucose into lipoteichoic acid.  相似文献   

4.
Exponential biosynthesis and excretion of lipoteichoic acid (LTA) during the exponential phase of growth, and continued synthesis and excretion during valine starvation of Streptococcus faecium (S. faecalis ATCC 9790), were shown. During exponential growth, extracellular LTA (LTAx) accounted for approximately 13% of the total LTA in cultures, whereas during valine starvation, this percentage increased to approximately 60% within 4 h. LTAx was present in a low-molecular-weight, apparently deacylated form, whereas intracellular (LTAi) was present primarily in an apparently high-molecular-weight, acylated and micellar form. Experiments utilizing chases of either fully equilibrated or short pulses of [14C]- or [3H]glycerol were used to demonstrate that LTAx was derived directly from LTAi.  相似文献   

5.
Glycerol is taken up by human muscle in vivo and incorporated into lipids, but little is known about regulation of glycerol metabolism in this tissue. In this study, we have analyzed the role of glycerol kinase (GlK) in the regulation of glycerol metabolism in primary cultured human muscle cells. Isolated human muscle cells exhibited lower GlK activity than fresh muscle explants, but the activity in cultured cells was increased by exposure to insulin. [U-(14)C]Glycerol was incorporated into cellular phospholipids and triacylglycerides (TAGs), but little or no increase in TAG content or lactate release was observed in response to changes in the medium glycerol concentration. Adenovirus-mediated delivery of the Escherichia coli GlK gene (AdCMV-GlK) into muscle cells caused a 30-fold increase in GlK activity, which was associated with a marked rise in the labeling of phospholipid or TAG from [U-(14)C]glycerol compared with controls. Moreover, GlK overexpression caused [U-(14)C]glycerol to be incorporated into glycogen, which was dependent on the activation of glycogen synthase. Co-incubation of AdCMV-GlK-treated muscle cells with glycerol and oleate resulted in a large accumulation of TAG and an increase in lactate production. We conclude that GlK is the limiting step in muscle cell glycerol metabolism. Glycerol 3-phosphate is readily used for TAG synthesis but can also be diverted to form glycolytic intermediates that are in turn converted to glycogen or lactate. Given the high levels of glycerol in muscle interstitial fluid, these finding suggest that changes in GlK activity in muscle can exert important influences on fuel deposition in this tissue.  相似文献   

6.
The ability in vitro of yeast mitochondrial and microsomal fractions to synthesize lipid de novo was measured. The major phospholipids synthesized from sn-[2-(3)H]glycerol 3-phosphate by the two microsomal fractions were phosphatidylserine, phosphatidylinositol and phosphatidic acid. The mitochondrial fraction, which had a higher specific activity for total glycerolipid synthesis, synthesized phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid, together with smaller amounts of neutral lipids and diphosphatidylglycerol. Phosphatidylcholine synthesis from both S-adenosyl[Me-(14)C]methionine and CDP-[Me-(14)C]choline appeared to be localized in the microsomal fraction.  相似文献   

7.
The release of lipoteichoic acid and mesosomal vesicles to the supernatant buffer during the formation of spherical, osmotically fragile bodies was studied using Streptococcus faecalis ATCC 9790. Autolytic N-acetylmuramidase action was permitted to take place in exponential-phase cells incubated in a buffer which provides an exceptional degree of osmotic stabilization. Both lipoteichoic acid and mesosomal vesicles were relatively rapidly released to the supernatant buffer. Most of the cellular content of lipoteichoic acid (and mesosomal vesicles) was found in the supernatant buffer at incubation times when the cells still retained over 75% of their cell wall. [14-C]- or [3-H]glycerol was used as a label for both cellular lipoteichoic acids and lipid-glycerol. Glycerol in lipoteichoic acid was quantitated after phenol-water and chloroform-methanol treatments and identified by products of acid hydrolysis and its ability to be precipitated by (i) antibodies specific for the polyglycerol-phosphate backbone, (ii) antibodies to the streptococcal group D antigen, and (iii) concanavalin A. Evidence was obtained that lipoteichoic acid was not associated with isolated mesosomal vesicles. Centrifugation of supernates at 200,000 X g sedimented membranous (mesosomal) vesicles and nearly all of the lipid-glycerol present, whereas essentially all of the lipoteichoic acid remained in the supernatant. The sedimented mesosomal vesicles differed from protoplast membrane in their higher lipid-phosphorus to protein ratio and in the absence of detectable levels of two enzymatic activities found in protoplast membranes, adenosine triphosphatase and polynucleotide phosphorylase. Both types of membranes were found to contain DD-carboxypeptidase and LD-transpeptidase activities at nearly the same specific activities. No evidence was obtained for the association of autolytic N-acetylmuramidase activity with either type of membrane preparation.  相似文献   

8.
Three autolytic-defective mutants of Streptococcus faecium (S. faecalis ATCC 9790) were isolated. All three autolytic-defective mutants exhibited the following properties relative to the parental strain: (i) slower growth rates, especially in chemically defined medium; (ii) decreased rates of cellular autolysis and increased survival after exposure to antibiotics which block cell wall biosynthesis; (iii) decreased rates of cellular autolysis when treated with detergents, suspended in autolysis buffers, or grown in medium lacking essential cell wall precursors; (iv) a reduction in the total level of cellular autolytic enzyme (active plus latent forms of the enzyme); (v) an increased ratio of latent to active forms of autolysin; and (vi) increased levels of both cellular lipoteichoic acid and lipids.  相似文献   

9.
The polar lipids of Streptococcus pneumoniae wild type and aminopterin-resistant strains were analysed. The membrane contained only two acid phospholipids, phosphatidylglycerol and cardiolipin, and a large amount of two glycolipids, glucosyldiglyceride and galactosylglucosyldiglyceride. The unsaturated acyl chains ranged from 58 to 87% of total fatty acids, depending on the strain and on growth conditions. No relation could be established between aminopterin resistance and polar lipid or fatty acid compositions. However, in the presence of bacteriostatic concentrations of aminopterin, the wild type and the resistant mutant did not have the same behavior. The resistant strain maintained its fatty acid composition and a normal [32P]phosphate distribution among phospholipids while the wild type shifted to a higher content in unsaturated fatty acids and to a high relative cardiolipin labelling. Such a differencein [32P] distribution was not observed when bacteriostatic concentrations of chloramphenicol were used, or when growth was stopped after amino acid deprivation induced by high concentrations of isoleucine. The biochemical basis of the aminopterin resistant character of the amiA mutants are not yet well understood but the present study establishes that the mutation confers a certain insensitivity of the lipid metabolism to aminopterin.  相似文献   

10.
The lipoteichoic acids were isolated from phenol extracts of four Listeria strains representing serotypes 4a, 4b, 6a, and 6 to compare the differences in structure of amphiphilic polysaccharides from various serotypes of Listeria spp. The lipoteichoic acids from the four strains examined had the same structure in both hydrophilic chains and lipid portions. On the basis of the results of nuclear magnetic resonance spectroscopy and Smith degradation, the hydrophilic chains were shown to be 1,3-linked poly(glycerol phosphate) in which some of the glycerol residues had alpha-galactosyl substituents. The lipid portions were released by treatment with 46% hydrogen fluoride or 98% acetic acid. They were determined to be 3(1)-(2'-O-alpha-D-galactopyranosyl-alpha-D-glucopyranosyl)-1(3), 2-diacylglycerol and 3(1)-[6'-phosphatidyl-2'-O-(alpha-D-galactopyranosyl)-alpha- D-glucopyranosyl]-1(3),2-diacylglycerol. The degrees of glycosyl substitution and proportions of the two lipids varied to some extent among these four strains.  相似文献   

11.
Pulse-chase experiments with [2-3H]glycerol and [14C]acetate revealed that in Staphylococcus aureus lipoteichoic acid biosynthesis plays a dominant role in membrane lipid metabolism. In the chase, 90% of the glycerophosphate moiety of phosphatidylglycerol was incorporated into the polymer: 25 phosphatidylglycerol + diglucosyldiacylglycerol leads to (glycerophospho)25-diglucosyldiacylglycerol + 25 diacylglycerol. Glycerophosphodiglucosyldiacylglycerol was shown to be an intermediate, confirming that the hydrophilic chain is polymerized on the final lipid anchor. Total phosphatidylglycerol served as the precursor pool and was estimated to turn over more than twice for lipoteichoic acid synthesis in one bacterial doubling. Of the resulting diacylglycerol approximately 10% was used for the synthesis of glycolipids and the lipid anchor of lipoteichoic acid. The majority of diacylglycerol recycled via phosphatidic acid to phosphatidylglycerol. Synthesis of bisphosphatidylglycerol was negligible and only a minor fraction of phosphatidylglycerol passed through the metabolically labile lysyl derivative. In contrast to normal growth, energy deprivation caused an immediate switch-over from the synthesis of lipoteichoic acid to the synthesis of bisphosphatidylglycerol.  相似文献   

12.
Cellular autolytic activity as well as lipid and lipoteichoic acid metabolism have been studied in cultures of Streptococcus faecalis receiving various combinations of the following treatments: chloramphenicol addition, starvation for an essential amino acid (valine), and cerulenin treatment. Lipoteichoic acid initially accumulated in chloramphenicol-treated and amino acid-starved cells and decreased relative to the cellular mass in cerulenin-treated cells. The relative phosphatidylglycerol content of amino acid-starved cultures or of cultures treated with either antibiotic rapidly decreased upon initiation of each treatment. In all cases, cerulenin initially stimulated diphosphatidylglycerol synthesis. Pretreatment of cultures with cerulenin prevented the inhibition of cellular synthesis autolysis normally observed during chloramphenicol treatment, but did not affect amino acid starvation-induced inhibition of autolytic activity. Variations in the levels of the nonionic lipid fraction, predominantly diglycerides, correlated best with the patterns of autolytic activity observed during chloramphenicol treatment, whereas variations in the levels of diphosphatidylglycerol and lipoteichoic acid correlated best with the patterns of autolytic activity observed during amino acid starvation. Components of the nonionic lipid fraction were demonstrated to inhibit autolytic activity 50% in whole cell and in cell wall assays at 60 and 120 nmol/mg (dry weight), respectively.  相似文献   

13.
Participation of microsomal CDP-diglycerides in mitochondrial biosynthesis of phosphatidylglycerol was studied by [3H]palmitoyl, [14C]linoleoyl, and [14C]arachidonoyl CDP-diglycerides and [3H]CDP-diglycerides which were bound to microsomal membranes, incubated with unlabelled mitochondrial membranes, and further incubated in the presence of radioactive sn-glycero-3-phosphate under conditions required for mitochondrial phosphatidylglycerol biosynthesis. Ten to 15% of microsomal radioactive CDP-diglycerides was transferred to mitochondrial membranes and incorporated into mitochondrial radioactive lipids identified as phosphatidylglycerol, phosphatidylglycerophosphate, and, when [14C]linoleoyl CDP-diglycerides were used, diphosphatidylglycerol (cardiolipin).  相似文献   

14.
The effect of bicuculline-induced convulsive seizures on lipid metabolism has been studied in four brain areas (cerebellum, cerebral cortex, hippocampus, and brainstem) using [2-3H]glycerol and [1,2-14C]ethanolamine as radioactive lipid precursors administered simultaneously with bicuculline. Twelve minutes after the administration, the uptake of radioactivity depended both on brain area and treatment, being generally higher in convulsing rats. The uptake of glycerol was influenced to a larger extent than that of ethanolamine and increased during convulsions, but its incorporation into lipids did not. In contrast, the amount of ethanolamine incorporated into lipids increased during bicuculline-induced seizures. The difference in behavior of glycerol and of ethanolamine is also indicated by the decrease of the 3H/14C ratio of phosphatidyl-ethanolamine in various brain areas during convulsions. It is, therefore, evident that the metabolism of the two precursors is affected differently by seizures.  相似文献   

15.
Membrane preparations, obtained from Bacillus strains which have N-acetylglucosamine-linked lipoteichoic acids in their membranes, were shown to catalyze the transfer of N-[14C]acetylglucosamine (GlcNAc) from beta-[14C]GlcNAc-P-undecaprenol to endogenous polymer. In this reaction, alpha-GlcNAc-P-undecaprenol or alpha-GlcNAc-PP-undecaprenol could not substitute for beta-GlcNAc-P-undecaprenol as the N-acetylglucosamine donor. This enzyme was most active at pH 6.0 and in the presence of 40 mM MgCl2. The apparent Km for beta-GlcNAc-P-undecaprenol was 2 microM. The radioactive polymer products, solubilized by hot phenol treatment, coincided with lipoteichoic acids in chromatographic behavior. Hydrogen fluoride treatment of the polymer products gave a major fragment identical with GlcNAc(alpha 1----2)glycerol, which corresponded to the dephosphorylated repeating units of the lipoteichoic acids in the examined strains. Thus it is concluded that beta-GlcNAc-P-undecaprenol serves as the donor of N-acetylglucosamine in the biosynthesis of lipoteichoic acids in a group of Bacillus strains.  相似文献   

16.
【目的】阐明猪链球菌2型荚膜唾液酸是否影响细菌毒力以及宿主对其炎症反应应答,为研究猪链球菌2型的致病机制奠定基础。【方法】比较实验菌株对BLAB/c小鼠模型的致病性;通过涂板计数的方法检测实验菌株在小鼠体内的分布;观察小鼠脑组织病理改变,分析实验菌株感染小鼠后中枢神经系统的病变差异;从小鼠体外全血细胞水平,运用ELISA法检测实验菌株感染后细胞炎性因子的分泌水平。【结果】荚膜唾液酸合成基因neuB缺失突变株ΔneuB相比野生株05ZYH33株,对小鼠毒力显著降低,回复突变株cΔneuB毒力回复至野生株水平;野生株和突变株在血液及脑组织中分布具有显著差异,均可致BLAB/c小鼠脑组织不同程度的损伤;与野生株组相比较,细菌/细胞相互作用不同时间点后,突变株组体外刺激小鼠全血细胞分泌MCP-1、IL-6的水平显著提高;【结论】荚膜唾液酸影响细菌的毒力及宿主细胞对其的炎症反应应答,它是猪链球菌2型穿透血脑屏障导致脑膜炎的重要毒力因子。  相似文献   

17.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

18.
Two independently isolated temperature-sensitive autolysis-defective mutants of Escherichia coli LD5 (thi lysA dapD) were characterized. The mutants were isolated by screening the survivors of a three-step enrichment process involving sequential treatments with bactericidal concentrations of D-cycloserine, benzyl-penicillin, and D-cycloserine at 42 degrees C. Cultures of the mutants underwent autolysis during beta-lactam treatment, D-cycloserine treatment, or diaminopimelic acid deprivation at 30 degrees C. The same treatments at 42 degrees C inhibited growth but did not induce lysis of the mutants. The minimum inhibitory concentrations of selected beta-lactam antibiotics and D-cycloserine were identical for the parent and mutant strains at both 30 and 42 degrees C. Both mutants failed to form colonies at 42 degrees C, and both gave rise to spontaneous temperature-resistant revertants. The revertants exhibited the normal lytic response when treated with D-cycloserine and beta-lactams or when deprived of diaminopimelic acid at 42 degrees C. The basis for the autolysis-defective phenotype of these mutants could not be determined. However, a nonspecific in vitro assay for peptidoglycan hydrolase activity in cell-free extracts indicated that both mutants were deficient in a peptidoglycan hydrolase. Both mutations were localized to the 56- to 61-min region of the E. coli chromosome by F' complementation.  相似文献   

19.
In order to understand the phosphatidylglycerol turnover mechanism, especially the differential turnover of diacylated and unacylated glycerol moieties of the lipid, products of phosphatidylglycerol metabolism were surveyed in vivo in Bacillus subtilis W23 and an alkalophile, Bacillus sp. strain A007. When cells of B. subtilis W23 labeled with radioactive glycerol were chased, lipoteichoic acid accumulated 90% of the radioactivity lost from the unacylated glycerol moiety of phosphatidylglycerol. Also, lipids other that phosphatidylglycerol, except diacylglycerol, and glycerol and glycerophosphate incorporated much less radioactivity. The [32P]phosphoryl group was also transferred from phosphatidylglycerol to lipoteichoic acid almost quantitatively in B. subtilis W23. A unique metabolism of phosphatidylglycerol was found in Bacillus sp. strain A007 which lacked phosphoglycolipid and lipoteichoic acid, that is, the turnover of phosphatidylglycerol of this organism was less extensive compared with that of B. subtilis W23, and both glycerol moieties of the lipid were metabolized at an identical rate. These results suggested that the major reaction involved in the turnover of phosphatidylglycerol was the transfer of glycerophosphate residue to lipoteichoic acid in a bacterium which possessed lipoteichoic acid and that several minor reactions also were involved in phosphatidylglycerol turnover.  相似文献   

20.
Isolated brain capillaries from 2-month-old rats were incubated for 2 h in the presence of [3-14C]acetoacetate, D-3-hydroxy[3-14C]butyrate, [U-14C]glucose, [1-14C]acetate or [1-14C]butyrate. Labelled CO2 was collected as an index of oxidative metabolism and incorporation of label precursors into lipids was determined. The rate of CO2 production from glucose was slightly higher than from the other substrates. Interestingly, acetoacetate was oxidized at nearly the same rate as glucose. This shows that ketone bodies could be used as a source of energy by brain capillaries. Radiolabelled substrates were also used for the synthesis of lipids, which was suppressed by the addition of albumin. The incorporation of [U-14C]glucose in total lipids was 10-times higher than that from other precursors. However, glucose labelled almost exclusively the glycerol backbone of phospholipids, especially of phosphatidylcholine. Ketone bodies as well as glucose were incorporated mainly into phospholipids, whereas acetate and butyrate were mainly incorporated into neutral lipids. The contribution to fatty acid synthesis of various substrates was in the following order: butyrate greater than or equal to acetate greater than ketone bodies greater than or equal to glucose. All precursors except glucose were used for sterol synthesis. Glucose produced almost exclusively the glycerol backbone of phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号