首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When isolated bovine adrenal medullary cells are incubated with the lipid-soluble Quin 2 acetoxymethyl ester, the ester permeates the plasma membrane and enters the cytosol, where it is hydrolysed by endogenous enzymes to yield an impermeant fluorescent indicator (Quin 2) which is sensitive to Ca2+ in the 0.1 microM range. This technique permits the average intracellular free Ca2+ level ([Ca2+]i) to be determined in a suspension of adrenal medullary cells. Unstimulated cells have a [Ca2+]i of 97 +/- 4 nM (n = 69). This level seems independent of extracellular calcium in the range 0.5-2 mM. When the extracellular calcium concentration is lowered to ca. 10(-7) M, however, [Ca2+]i decreases. A transient increase in [Ca2+]i occurs when cells are challenged with either acetylcholine or a high potassium medium. The time course of the [Ca2+]i transient rises to a maximum within seconds, and decreases to basal levels over minutes. The maximum level of [Ca2+]i associated with secretion is very variable. Hexamethonium, methyoxyverapamil, and the absence of extracellular calcium block not only the secretory response but also the [Ca2+]i transient. The action of acetylcholine leading to the Ca2+]i transient is blocked when cells are suspended in a depolarizing medium. Extracellular magnesium inhibits both the [Ca2+]i transient and the secretory response evoked by acetylcholine. Secretion is, however, more sensitive to magnesium inhibition than is calcium entry. The magnitudes of the [Ca2+]i transient and the secretory response decrease as the concentration of intracellular Quin 2 increases. Measurements of the amount of indicator titrated with calcium, as a result of an acetylcholine or potassium challenge, suggest that the increase in the apparent calcium content of the cytosol might arise from two contributing sources of calcium entry.  相似文献   

2.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

3.
Spatiotemporal change of the cytosolic free Ca2+ concentration ([Ca2+]i) in response to a variety of secretagogues was examined in rat pancreatoma AR-42J and AR-IP cells by microspectroflurometry and digital imaging microscopy after loading with fura-2. In the presence of external Ca2+, carbachol, CCK-OP (cholecystokinin-octapeptide), gastrin, norepinephrine or high K+ evoked a large transient increase in [Ca2+]i in AR-42J cells which declined to a sustained level before slowly declining towards the resting level. In the absence of external Ca2+, a transient increase in [Ca2+]i were evoked by all the ligands except for high K+ stimulation, which declined rapidly towards the resting level. The [Ca2+]i increase caused by carbachol and high K+ treatment was inhibited by muscarinic receptor antagonist, atropine, and by L-type Ca2+ channel blocker, nifedipine, respectively. The transient [Ca2+]i increase induced by gastrin stimulation was not blocked by Ca2+ channel blocker, lanthanum. In the AR-IP cells, which are non-differentiated pancreatoma cell line, all stimulations including high K+ treatment have failed to evoke [Ca2+]i response. These intracellular Ca2+ mobilizations in response to ligands in AR-42J cells were displayed by digital imaging microscopy. From these results we conclude that AR-42J cells has an alpha-adrenergic receptor, in addition to muscarinic acetylcholine receptor, CCK-OP receptor, gastrin receptor and voltage dependent Ca2+ channel. In marked contrast, AR-IP cells have neither any hormone receptor for the above ligands nor voltage dependent Ca2+ channel.  相似文献   

4.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

5.
Bovine vitreous lipid factor (bVLF) is a complex phospholipid isolated from bovine vitreous body with strong Ca(2+)-mobilizing activity. In this study, the effects of bVLF on membrane potential were investigated in EGFR-T17 fibroblasts with the whole-cell patch clamp technique on monolayer cells, as well as with the fluorescent dye bis-oxonol as membrane potential-sensitive probe on monolayer and suspension cells. bVLF induced a transient hyperpolarization characterized by an initial peak and subsequent return to resting membrane potential levels within 1-2 min. The increase of [Ca(2+)](i) was concomitant with an outward current responsible for the hyperpolarizing response. Results with: (a) high [K(+)](o) media; (b) the monovalent cation ionophore gramicidin; and (c) substitution of K(+) with Cs(+) in the intracellular solution were consistent with the involvement of K(+) channels. The bVLF-induced hyperpolarization was blocked by the K(+) channel blockers, quinine and tetraethylamonium chloride, and partially affected by 4-aminopyridine. The calcium ionophore ionomycin caused a similar hyperpolarization as bVLF. When intracellular calcium was buffered by adding BAPTA to the pipette solution, bVLF-activated outward current was prevented. Moreover, the hyperpolarization response was strongly reduced at low doses (3 nM) of specific Ca(2+)-activated K(+) channel blockers, charybdotoxin and iberiotoxin. Based on these observations we conclude that bVLF hyperpolarizes the cells via the activation of a Ca(2+)-dependent K(+) current. In addition, it was observed that bVLF did not have a significant effect on intercellular communication measured by a single patch-electrode technique. Thus, membrane potential changes appeared to belong to the earliest cellular responses triggered by bVLF, and are closely associated with phosphatidic acid-dependent [Ca(2+)](i) mobilization.  相似文献   

6.
7.
The objective of this study was to assess the contribution of Na+-Ca2+ exchange activity to Ca2+ efflux at various cytosolic Ca2+ concentrations ([Ca2+]i) in transfected Chinese hamster cells expressing the bovine cardiac Na+-Ca2+ exchanger. Ionomycin was added to fura-2 loaded cells and the resulting [Ca2+]i transient was monitored in Ca2+-free media with or without extracellular Na+. The presence of Na+ reduced both the amplitude and duration of the [Ca2+]i transient. Na+ had similar effects when the peak of the [Ca2+]i transient was buffered to 100 nM by cytosolic EGTA, or when Ca2+ was slowly released from internal stores with thapsigargin. Ca2+ efflux following ionomycin addition was directly measured with extracellular fura-2 and followed a biphasic time course (t(1/2) approximately = 10 s and 90s). The proportion of total efflux owing to the rapid phase was increased by Na+ and reduced by EGTA-loading. Na+ accelerated the initial rate of Ca2+ efflux by 65% in unloaded cells but only by 16% in EGTA-loaded cells. In both cases, the stimulation by Na+ was less than expected, given the pronounced effects of Na+ on the [Ca2+]i transient. We conclude that the exchanger contributes importantly to Ca2+ efflux activity at all [Ca2+]i values above 40 nM. We also suggest that Ca2+ efflux pathways may involve non-cytosolic or local routes of Ca2+ traffic.  相似文献   

8.
The involvement of extracellular free Ca2+ in histamine release was investigated in rat peritoneal mast cells. Incubation of non-antigenized cells in a media with high extracellular potassium did not increase histamine release. Secretion induced by A23187 and compound 48/80 in the presence of Ca2+ requires metabolic energy. In the absence of external free Ca2+ (2.5 microM) histamine release induced by A23187 is reduced but not abolished. Secretion induced by compound 48/80 is independent of extracellular Ca2+. These results lead us to suggest that mast cell plasma membranes probably lack voltage-gated Ca2+ channels and that external Ca2+ may not be an absolute requisite for histamine secretion.  相似文献   

9.
The influence of extracellular Ca2+ on hormone-mediated increases of cytosolic free Ca2+ [( Ca2+]i) and phosphorylase activity was studied in isolated hepatocytes. In the presence of 1.3 mM extracellular Ca2+, the stimulation of phosphorylase activity produced by vasopressin or phenylephrine was maintained for 20-30 min. In contrast, the change in [Ca2+]i under these conditions was more transient and declined within 3-4 min to steady state values only 70 +/- 8 nM above the resting [Ca2+]i. Removal of the hormone from its receptor with specific antagonists caused a decline in [Ca2+]i back to the original resting values. Subsequent addition of a second hormone elicited a further Ca2+ transient. If the antagonist was omitted, the second hormone addition did not increase [Ca2+]i indicating that the labile intracellular Ca2+ pool remains depleted during receptor occupation. When extracellular Ca2+ was omitted, both the changes of [Ca2+]i and phosphorylase a caused by vasopressin were transient and returned exactly to resting values within 3-4 min. The subsequent readdition of Ca2+ to these cells produced a further increase of [Ca2+]i and phosphorylase activity which was larger than the changes observed upon Ca2+ addition to untreated cells. This reactivation of phosphorylase showed saturation kinetics with respect to extracellular [Ca2+], was maximally stimulated within 1 min of vasopressin addition and was inhibited by high concentration of diltiazem. We conclude that entry of extracellular Ca2+ into the cell is required in order to obtain a sustained hormonal stimulation of phosphorylase activity and is responsible for the maintenance of a small steady state elevation of [Ca2+]i.  相似文献   

10.
Examination was made of the effects of gastrin-releasing peptide (GRP) on human medullary thyroid carcinoma cells (TT cells). GRP stimulated calcitonin(CT) release in a concentration-dependent manner at 0.1-1000 nmol/l. On adding forskolin along with GRP, CT release was greater than by GRP alone. The stimulatory effect of A23187 was not additive. Intracellular free calcium concentration ([Ca2+]i) was measured for individual TT cells loaded with fura-2. The addition of GRP caused a rapid and transient rise in [Ca2+]i in a concentration-dependent manner followed by a sustained increase in [Ca2+]i. In the medium without Ca2+, this sustained increase did not occur and the concentration of CT release from TT cells by GRP was reduced by approximately a half. GRP would thus appear to be importantly involved in the regulation of thyroid C cell function through modulation of [Ca2+]i.  相似文献   

11.
Single muscle fibers from rabbit soleus and adductor magnus and from semitendinosus muscles were peeled to remove the sarcolemma and then stimulated to release Ca2+ by (a) caffeine application or (b) ionic depolarization accomplished via substitution of choline chloride for potassium propionate at constant [K+] X [Cl-] in the bathing solution. Each stimulus, ionic or caffeine, elicited an isometric tension transient that appeared to be due to Ca2+ released from the sarcoplasmic reticulum (SR). The peak magnitude of the ionic (Cl- -induced) tension transient increased with increasing Cl- concentration. The application of ouabain to fibers after peeling had no effect on either type of tension transient. However, soaking the fibers in a ouabain solution before peeling blocked the Cl- -induced but not the caffeine-induced tension transient, which suggests that ouabain's site of action is extracellular, perhaps inside transverse tubules (TTs). Treating the peeled fibers with saponin, which should disrupt TTs to a greater extent than SR membrane, greatly reduced or eliminated the Cl- -induced tension transient without significantly altering the caffeine-induced tension transient. These results suggest that the Cl- -induced tension transient is elicited via stimulation of sealed, polarized TTs rather than via ionic depolarization of the SR.  相似文献   

12.
C6 glial tumor cells exposed to phorbol myristate acetate (PMA) possessed lowered cAMP content, reduced ability to accumulate cAMP in response to norepinephrine or cholera toxin, and a 3-fold increase in the concentration of norepinephrine producing 50% of the maximal rate of cAMP accumulation. Detectable effects on cAMP accumulation occurred within 10 min of exposure to PMA, and prominent effects by 2 h. PMA similarly affected cells pretreated with cycloheximide. In contrast, Ca2+-depleted preparations of control and PMA-treated cells accumulated cAMP identically in response to norepinephrine or cholera toxin. Ca2+ restoration, which increased the rate of cAMP accumulation in control cells severalfold, did not enhance cAMP accumulation in PMA-treated cells. Neither high catecholamine nor high extracellular Ca2+ concentrations reversed the suppression of cAMP accumulation by PMA. Trifluoperazine, which inhibited the Ca2+-dependent component of norepinephrine-stimulated cAMP accumulation in control cells, did not significantly reduce norepinephrine-stimulated cAMP accumulation in PMA-treated cells. Cell free preparations of control and PMA-treated cultures did not differ significantly in calmodulin content or in Ca2+-stimulated adenylate cyclase, Ca2+-dependent cAMP phosphodiesterase, and (Ca2+-Mg2+)-ATPase activities. The Ca2+ content, however, of intact cells decreased with time of PMA treatment. Within minutes after exposure to PMA, the ability of Ca2+-depleted cells to take up 45Ca was significantly reduced. Both 45Ca uptake and Ca2+-dependent cAMP accumulation were reduced over the same PMA concentration range.  相似文献   

13.
To trace the route of Ca2+ entry and the role of the cytosolic Ca2+ pool in reloading of the internal stores of pancreatic acinar cells, Mn2+ influx into Fura 2-loaded cells and the effect of 1,2-bis(2-aminophenoxyethane-N,N,N',N'-tetraacetic acid (BAPTA) on Ca2+ storage in intracellular stores and reloading were examined. Treatment of acini suspended in Ca2(+)-free medium with carbachol (cell stimulation) or carbachol and atropine (reloading period) resulted in 2-fold increase in the rate of Mn2+ influx. Increasing Ca2+ permeability of the plasma membrane by elevation of extracellular pH from 7.4 to 8.2 further increased the rate of Mn2+ influx observed during cell stimulation and the reloading period. Loading the acini with BAPTA by incubation with 50 microM of the acetomethoxy form of BAPTA (BAPTA/AM) was followed by a transient reduction in free cytosolic Ca2+ concentration ((Ca2+]i). To compensate for the increased Ca2+ buffering capacity in the cytosol the acini incorporated Ca2+ from the external medium. Although BAPTA prevented changes in free cytosolic Ca2+ concentration during carbachol and atropine treatment, it had no apparent effect on Ca2+ content of the internal stores or the ability of agonists to release Ca2+ from these stores. Loading the cytosol with BAPTA considerably reduced the rate of Ca2+ reloading. These observations are not compatible with direct communication between the medium and the inositol 1,4,5-trisphosphate releasable pool and provide direct evidence for Ca2+ entry into the cytosol prior to its uptake into the intracellular pool, both during cell stimulation and the Ca2+ reloading.  相似文献   

14.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

15.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

16.
Agonist-induced changes in cytoplasmic free Ca2+ concentration [( Ca2+]i) of isolated canine gastric chief cells were evaluated by microspectrofluorometry of superfused fura-2 loaded cells. Application of high concentrations of carbachol (CCh, 10(-5) M) or cholecystokinin octapeptide (10(-8) M) resulted in biphasic Ca2+ mobilization comprising an initial large transient followed by a small sustained elevation above the prestimulation level. Submaximal concentrations of CCh (10(-6) M) or cholecystokinin (10(-9) M) led to either a transient series of large amplitude Ca2+ spike(s) or a higher frequency of sustained Ca2+ oscillations of smaller amplitude. Cholecystokinin at 10(-10) M induced only sustained Ca2+ oscillations. Elimination of Ca2+ from the medium had no immediate effect on oscillations indicating an intracellular source of Ca2+. Thus the Ca2+ signalling mode in chief cells is dependent on agonist concentrations.  相似文献   

17.
Amyloid beta-peptide (Abeta) plays a fundamental role in the pathogenesis of Alzheimer's disease. We recently reported that the redox state of the methionine residue in position 35 of amyloid beta-peptide (Abeta) 1-42 (Met35) strongly affects the peptide's ability to trigger apoptosis and is thus a major determinant of its neurotoxicity. Dysregulation of intracellular Ca(2+) homeostasis resulting in the activation of pro-apoptotic pathways has been proposed as a mechanism underlying Abeta toxicity. Therefore, we investigated correlations between the Met35 redox state, Abeta toxicity, and altered intracellular Ca(2+) signaling in human neuroblastoma IMR32 cells. Cells incubated for 6-24 h with 10 microM Abeta1-42 exhibited significantly increased KCl-induced Ca(2+) transient amplitudes and resting free Ca(2+) concentrations. Nifedipine-sensitive Ca(2+) current densities and Ca(v)1 channel expression were markedly enhanced by Abeta1-42. None of these effects were observed when cells were exposed to Abeta containing oxidized Met35 (Abeta1-42(Met35-Ox)). Cell pre-treatment with the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (1 microM) or the Ca(v)1 channel blocker nifedipine (5 microM) significantly attenuated Abeta1-42-induced apoptosis but had no effect on Abeta1-42(Met35-Ox) toxicity. Collectively, these data suggest that reduced Met35 plays a critical role in Abeta1-42 toxicity by rendering the peptide capable of disrupting intracellular Ca(2+) homeostasis and thereby provoking apoptotic cell death.  相似文献   

18.
E Wiener  A Scarpa 《Cell calcium》1985,6(5):385-395
Two new techniques for internalizing metallochromic indicators into the cytosol of mammalian cells are described. One method consists of hypertonically treating the cells in the presence of the indicator, followed by a hypoosmotic treatment. The second method consists of incubating the cells at high density in a concentrated indicator solution in physiological saline. Using either method, arsenazo III or antipyrylazo III was internalized into Ehrlich Ascites tumor (EAT) cells at concentrations yielding measurable differential absorbance changes which correspond to changes in the intracellular Ca2+ concentration. In the case of antipyrylazo III, the amount of indicator internalized ranged between 140 and 350 microM, and was dependent on the metabolic state of the cell during loading. Control and loaded cells possessed virtually identical ATP/ADP ratios, as measured by high performance liquid chromatography (HPLC) in cell extracts. Antipyrylazo III was also internalized by rat hepatocytes without detectable cell damage. Treatment of metabolically active EAT cells with the calcium ionophore A23187 results in only a slight increase in the intracellular free Ca2+ concentration, [Ca2+]i, whereas treatment with the calcium ionophore ionomycin induces a substantial but transient increase in the [Ca2+]i. In contrast, metabolically inhibited EAT cells show a large rise in the [Ca2+]i upon addition of A23187. Thus, these techniques offer another way of measuring intracellular free Ca2+ changes in mammalian cells and may prove useful, especially where concentrations of free cytosolic Ca2+ larger than 1 microM are expected.  相似文献   

19.
Previous neurophysiological studies on prion protein deficient (Prnp(-/-)) mice have revealed a significant reduction of slow afterhyperpolarization currents (sI(AHP)) in hippocampal CA1 pyramidal cells. Here we aim to determine whether loss of PrP(C.) directly affects the potassium channels underlying sI(AHP) or if sI(AHP) is indirectly disturbed by altered intracellular Ca(2+) fluxes. Patch-clamp measurements and confocal Ca(2+) imaging in acute hippocampal slice preparations of Prnp(-/-) mice compared to littermate control mice revealed a reduced Ca(2+) rise in CA1 neurons lacking PrP(C) following a depolarization protocol known to induce sI(AHP). Moreover, we observed a reduced Ca(2+) influx via l-type voltage gated calcium channels (VGCCs). No differences were observed in the protein expression of the pore forming alpha1 subunit of VGCCs Prnp(-/-) mice. Surprisingly, the beta2 subunit, critically involved in the transport of the alpha1 subunit to the plasma membrane, was found to be up-regulated in knock out hippocampal tissue. On mRNA level however, no differences could be detected for the alpha1C, D and beta2-4 subunits. In conclusion our data support the notion that lack of PrP(C.) does not directly affect the potassium channels underlying sI(AHP), but modulates these channels due to its effect on the intracellular free Ca(2+) concentration via a reduced Ca(2+) influx through l-type VGCCs.  相似文献   

20.
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in heart muscle. In the present study, we investigated changes of intracellular Ca2+ increased by potassium chloride (KCl) and phenylephrine (PE) under hyperglycemia in rat heart myoblast H9c2 cells (BCRC 60096), respectively. We employed the fluorescent Ca2+-indicator, fura-2, and digital imaging microscopy to measure [Ca2+]i in H9c2 cells. Cells were cultured in hyperglycemic (30 mM glucose) Dulbecco's Modified Eagle's Medium. The variation of [Ca2+]i induced by KCI and PE in hyperglycemia was examined, respectively. Moreover, tiron, one of the antioxidants, was pretreated in hyperglycemia-treated H9c2 cells to measure the role of free radicals in the changes of intracellular [Ca2+]i. An influx in intracellular Ca2+ induced by KCl or PE was observed in a dose-dependent manner and reached the highest concentration of 434 +/- 42.3 nM and 443 +/- 42.8 nM (n = 24 cells), respectively. Moreover, this increase of intracellular [Ca2+]i induced by KCl or PE was markedly reduced in cells exposed to hyperglycemia (434 +/- 42.3 vs. 1.26 +/- 0.21 nM and 443 +/- 42.8 vs. 2.54 +/- 0.25 nM, n = 24 cells, P < 0.001, respectively). Similar changes were not observed in cells received mannitol showing same osmolarity. However, the reduction of intracellular [Ca2+]i induced by hyperglycemia was abolished significantly in the presence of tiron. Our results suggest that an increase of intracellular Ca2+ by KCl or PE in heart cell was markedly reduced by hyperglycemic treatment; mediation of free radicals in this action can be considered because it was reversed in the presence of tiron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号