首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular basis for substrate translocation in the Na+/Cl--dependent neurotransmitter transporters remains elusive. Here we report novel insight into the translocation mechanism by delineation of an endogenous Zn2+-binding site in the human dopamine transporter (hDAT). In micromolar concentrations, Zn2+ was found to act as a potent, non-competitive blocker of dopamine uptake in COS cells expressing hDAT. In contrast, binding of the cocaine analogue, WIN 35,428, was markedly potentiated by Zn2+. Surprisingly, these effects were not observed in the closely related human norepinephrine transporter (hNET). A single non-conserved histidine residue (His193) in the large second extracellular loop (ECL2) of hDAT was discovered to be responsible for this difference. Thus, Zn2+ modulation could be conveyed to hNET by mutational transfer of only this residue. His375 conserved between hDAT and hNET, present in the fourth extracellular loop (ECL4) at the top of transmembrane segment VII, was identified as a second major coordinate for Zn2+ binding. These data provide evidence for spatial proximity between His193 and His375 in hDAT, representing the first experimentally demonstrated proximity relationship in an Na+/Cl--dependent transporter. Since Zn2+ did not prevent dopamine binding, but inhibited dopamine translocation, our data suggest that by constraining movements of ECL2 and ECL4, Zn2+ can restrict a conformational change critical for the transport process.  相似文献   

2.
Previously, we have identified three Zn(2+) binding residues in an endogenous Zn(2+) binding site in the human dopamine transporter (hDAT): (193)His in extracellular loop 2 (ECL 2), (375)His at the external end of transmembrane segment (TM) 7, and (396)Glu at the external end of TM 8. Here we have generated a series of artificial Zn(2+) binding sites in a domain situated around the external ends of TMs 7 and 8 by taking advantage of the well-defined structural constraints for binding of the zinc(II) ion. Initially, we found that the Zn(2+)-coordinating (193)His in ECL 2 could be substituted with a histidine inserted at the i - 4 position relative to (375)His in TM 7. In this mutant (H193K/M371H), Zn(2+) potently inhibited [(3)H]dopamine uptake with an IC(50) value of 7 microM as compared to a value of 300 microM for the control (H193K). These data are consistent with the presence of an alpha-helical configuration of TM 7. This inference was further corroborated by the observation that no increase in the apparent Zn(2+) affinity was observed following introduction of histidines at the i - 2, i - 3, and i - 5 positions. In contrast, introduction of histidines at positions i + 2, i + 3, and i + 4 all resulted in potent inhibition of [(3)H]dopamine uptake by Zn(2+) (IC(50) = 3-32 microM). These observations are inconsistent with continuation of the helix beyond position 375 and indicate an approximate boundary between the end of the helix and the succeeding loop. In summary, the data presented here provide new insight into the structure of a functionally important domain in the hDAT and illustrate how engineering of Zn(2+) binding sites can be a useful approach for probing both secondary and tertiary structure relationships in membrane proteins of unknown structure.  相似文献   

3.
Human embryonic kidney 293 cells stably transfected with the rat plasmalemmal serotonin transporter (rSERT) were incubated with 5-[3H]hydroxytryptamine ([3H]5-HT) and superfused. Substrates of the rSERT, such as p-chloroamphetamine (PCA) or methylenedioxymethamphetamine, concentration-dependently increased basal efflux of [3H]5-HT. 5-HT reuptake blockers (e.g., imipramine, citalopram) also caused an enhancement of [3H]5-HT efflux, reaching about half the maximal effect of the rSERT substrates. In uptake experiments, both groups of substances concentration-dependently inhibited 5-HT uptake. EC50 values obtained in superfusion experiments significantly correlated with IC50 values from uptake studies (r2 = 0.92). Addition of the Na+,K(+)-ATPase inhibitor ouabain (100 microM) to or the omission of K+ from the superfusion buffer accelerated basal efflux. The effect of PCA (10 microM) was markedly enhanced by both measures, whereas the effect of uptake inhibitors remained unchanged. When [3H]MPP+, a substrate with low affinity for the rSERT, was used instead of [3H]5-HT for labeling the cells, uptake inhibitors failed to augment efflux. By contrast, PCA accelerated [3H]MPP+ efflux, and its effect was strongly enhanced in the presence of ouabain. The results suggest that the [3H]5-HT efflux caused by substrates of rSERT is carrier-mediated, whereas efflux induced by uptake inhibitors is a consequence of interrupted high-affinity reuptake that is ongoing even under superfusion conditions.  相似文献   

4.
Gether U  Norregaard L  Loland CJ 《Life sciences》2001,68(19-20):2187-2198
The dopamine transporter is member of a large family of Na+/Cl- dependent neurotransmitter and amino acid transporters. Little is known about the molecular basis for substrate translocation in this class of transporters as well as their tertiary structure remains elusive. In this report, we provide the first crude insight into the structural organization of the human dopamine transporter (hDAT) based on the identification of an endogenous high affinity Zn2+ binding site followed by engineering of an artificial Zn2+ binding site. By binding to the endogenous site, Zn2+ acts as a potent non-competitive inhibitor of dopamine uptake mediated by the hDAT transiently expressed in COS-7 cells. Systematic mutagenesis of potential Zn2+ coordinating residues lead to the identification of three residues on the predicted extracellular face of the transporter, 193His in the second extracellular loop, 375His at the external end of the putative transmembrane segment (TM) 7, and 396Glu at the external end of TM 8, forming three coordinates in the endogenous Zn2+ binding site. The three residues are separate in the primary structure but their common participation in binding the small Zn(II) ion define their spatial proximity in the tertiary structure of the transporter. Finally, an artificial inhibitory Zn2+ binding site was engineered between TM 7 and TM 8. This binding site both verify the proximity between the two domains as wells as it supports an alpha-helical configuration at the top of TM 8 in the hDAT.  相似文献   

5.
Recently, we have described a distance constraint in the unknown tertiary structure of the human dopamine transporter (hDAT) by identification of two histidines, His(193) in the second extracellular loop and His(375) at the top of transmembrane (TM) 7, that form two coordinates in an endogenous, high affinity Zn(2+)-binding site. To achieve further insight into the tertiary organization of hDAT, we set out to identify additional residues involved in Zn(2+) binding and subsequently to engineer artificial Zn(2+)-binding sites. Ten aspartic acids and glutamic acids, predicted to be on the extracellular side, were mutated to asparagine and glutamine, respectively. Mutation of Glu(396) (E396Q) at the top of TM 8 increased the IC(50) value for Zn(2+) inhibition of [(3)H]dopamine uptake from 1.1 to 530 microM and eliminated Zn(2+)-induced potentiation of [(3)H]WIN 35,428 binding. These data suggest that Glu(396) is involved in Zn(2+) binding to hDAT. Importantly, Zn(2+) sensitivity was preserved following substitution of Glu(396) with histidine, indicating that the effect of mutating Glu(396) is not an indirect effect because of the removal of a negatively charged residue. The common participation of Glu(396), His(193), and His(375) in binding the small Zn(2+) ion implies their proximity in the unknown tertiary structure of hDAT. The close association between TM 7 and 8 was further established by engineering of a Zn(2+)-binding site between His(375) and a cysteine inserted in position 400 in TM 8. Summarized, our data define an important set of proximity relationships in hDAT that should prove an important template for further exploring the molecular architecture of Na(+)/Cl(-)-dependent neurotransmitter transporters.  相似文献   

6.
Monensin-mediated ionic movements were studied in frog skeletal muscle. The ionophore, which forms electrically neutral complexes with monovalent cations, induced dose dependent fluxes of Na+, K+ and H+ in and out of the fibers. Monensin concentrations ([MON]) ranged from 2 to 40 microM. In the presence of normal Ringer's solution the following maximum ionic exchanges were generated by monensin (in pmol cm-2 s-1): (1) Nai+/Nao+ 112, (2) Nai+/Ho+ 30.7, (3) Ki+/Nao+ 14.2 (4) Hi+/Nao+ 49. The maximum net fluxes produced by these exchanges (i.e. for [MON] = infinity) are (in pmol cm-2 s-1): Na+ (inward) 32.5, K+ (outward) 14.2, H+ (outward) 18.3. The last one appears to be largely offset by a passive (monensin-independent) H+ influx down an inwardly directed electrochemical gradient promoted by pH reduction of the T-tubular lumen content as a consequence of the monensin-mediated net H+ efflux. Maximum unidirectional cationic fluxes mediated by monensin amounted to 206 pmol cm-2 s-1 and had the following composition: influx: 85% Na+ and 15% H+; efflux: 69% Na+, 7% K+, 24% H+.  相似文献   

7.
The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [(3)H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter. Changes in various intracellular ionic conditions affected the reverse current: higher concentrations of Na(+) enhanced the ratio of outward over inward transport current, while a considerable decrease of the outward current and a parallel reduction of the transporter-mediated GABA efflux were observed after treatments causing a diminution of the intracellular Cl(-) concentration. Particularly interesting was the impairment of the reverse transport observed after depletion of internal Cl(-) generated by the activity of a coexpressed K(+)-Cl(-) exporter KCC2. This finding suggests that reverse GABA transport may be physiologically regulated during early neuronal development, similarly to the functional alterations seen in GABA receptors caused by KCC2 activity.  相似文献   

8.
Cultures of bovine adrenomedullary chromaffin cells accumulated 1-[methyl-3H]methyl-4-phenylpyridinium ([3H]MPP+) in a time- and concentration-dependent manner with an apparent Km of 0.7 microM and a Vmax of 3 pmol/min/10(6) cells. The uptake was sodium dependent and sensitive to inhibitors of the cell-surface catecholamine transporter. At low concentrations of MPP+, the subcellular distribution was identical to that of endogenous catecholamines in the catecholamine-containing chromaffin vesicles. However, at a higher concentration of MPP+, a larger proportion of the toxicant was recovered in the cytosolic fraction, with less in the chromaffin vesicle fractions. When cells were prelabeled with [3H]MPP+, at 1 and 300 microM, and then permeabilized with digitonin in the absence of Ca2+, there was a proportionally greater release of MPP+ from the cells labeled at the higher concentration of the toxicant. In the presence of Ca2+, cell permeabilization induced a time-dependent secretion of catecholamines and a parallel secretion of MPP+. Under these conditions, the secretion of endogenous catecholamines was unaffected by the presence of MPP+. When the permeabilization studies were carried out in the presence of tetrabenazine, a massive release of MPP+ was observed in the absence of Ca2+ and was not further increased by Ca2+. In intact cells prelabeled with 300 microM [3H]MPP+, the secretagogues nicotine and veratridine elicited a Ca2+ -dependent secretion of catecholamines and MPP+ from the cells in similar proportions to their cellular contents. Barium-induced release of both species was independent of external Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Substituted 1-tosyl-3-vinylindoles undergo [3+2] dipolar cycloaddition with cyclic nitrones to afford substituted isoxazoles in good yield and high diastereoselectivity. The cycloadducts were readily converted in 4 steps into ring constrained homotryptamine analogs. These analogs exhibited excellent binding affinity for the human serotonin transporter (hSERT). Indoles bearing a 5-cyano group and a pendent ethyl(tetrahydroisoquinoline) moiety at the 3-position displayed the best potency for hSERT and high selectivity versus hDAT and hNET.  相似文献   

10.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

11.
The effect of covalent sulfhydryl modification on dopamine uptake by the human dopamine transporter was determined by rotating disc electrode voltammetry. A transporter construct, X5C, with five mutated cysteines (C90A, C135A, C306A, C319F, and C342A) and the constructs into which the wild-type cysteines were substituted back into X5C, one at a time, all showed nearly normal binding affinity for [(3)H]CFT and for cocaine, but they displayed significant reductions in K(m) and V(max) for DA uptake. Reaction of Cys-90 or Cys-306 with impermeant methanethiosulfonate derivatives enhanced dopamine uptake to a similar extent as the previously observed enhancement of [(3)H]CFT binding caused by the same reaction, suggesting that cocaine may bind preferentially to a conformation in the transport cycle. m-Tyramine increased the rate of reaction of (2-aminoethyl)methanethiosulfonate (MTSEA) with X-A342C, the construct with a cytoplasmic loop residue Cys-342 restored. This m-tyramine-induced increase in reactivity appeared to require the inward transport rather than the outward transport or external binding of m-tyramine, and it was prevented by cocaine. Thus, inward translocation of substrates may involve structural rearrangement of hDAT, which likely exposes Cys-342 to reaction with MTSEA, and Cys-342 may be located on a part of the transporter associated with cytoplasmic gating.  相似文献   

12.
hCAT-3 (human cationic amino acid transporter type three) was investigated with both the two-electrode voltage clamp method and tracer experiments. Oocytes expressing hCAT-3 displayed less negative membrane potentials and larger voltage-dependent currents than native or water-injected oocytes did. Ion substitution experiments in hCAT-3-expressing oocytes revealed a large conductance for Na+ and K+. In the presence of L-Arg, voltage-dependent inward and outward currents were observed. At symmetrical (inside/outside) concentrations of L-Arg, the conductance of the transporter increased monoexponentially with the L-Arg concentrations; the calculated Vmax and KM values amounted to 8.3 microS and 0.36 mM, respectively. The time constants of influx and efflux of [3H]L-Arg, at symmetrically inside/outside L-Arg concentrations (1 mM), amounted to 79 and 77 min, respectively. The flux data and electrophysiological experiments suggest that the transport of L-Arg through hCAT-3 is symmetric, when the steady state of L-Arg flux has been reached. It is concluded that hCAT-3 is a passive transport system that conducts monovalent cations including L-Arg. The particular role of hCAT-3 in the diverse tissues remains to be elucidated.  相似文献   

13.
BACKGROUND/AIM: The present study aimed at elucidating the mechanism(s) of serotonin (5-HT) efflux induced by thapsigargin from human platelets in the absence of extra-cellular Ca2+. METHODS: Efflux of pre-loaded radiolabeled serotonin was generally determined by filtration techniques. Cytosolic concentrations of Ca2+, Na+ and H+ were measured with appropriate fluorescent probes. RESULTS: 5-HT efflux from control or reserpine-treated platelets--where reserpine prevents 5-HT transport into the dense granules--was proportional to thapsigargin evoked cytosolic [Ca2+]c increase. Accordingly factors as prostacyclin, aspirin and calyculin which reduced [Ca2+]c-increase also inhibited the 5-HT efflux. Thapsigargin, which also caused a remarkable increase in cytosolic [Na+]c, promoted less 5-HT release, in parallel to lower [Na+]c and [Ca2+]c increase, when added to platelet suspensions containing low [Na+]. The Na+/H+ exchanger monensin increased the [Na+]c and induced 5-HT efflux without affecting the Ca2+ level. The 5-HT efflux induced by both [Ca2+] or [Na+]c increase did not depend on pH or membrane potential changes, whereas it decreased in the absence of extra-cellular K+, and increased in the absence of Cl- or Na+. CONCLUSION: Increases in [Ca2+]c and [Na+]c independently induce serotonin efflux through the outward directed plasma membrane serotonin transporter SERT. This event might be physiologically important at the level of capillaries or narrowed arteries where platelets are subjected to high shear stress which causes [Ca2+]c increase followed by 5-HT release which might exert vasodilatation.  相似文献   

14.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

15.
The alternate access model provides the theoretical framework for understanding how transporters translocate hydrophilic substrates across the lipid bilayer. The model postulates at least two conformations of a transporter, an outward and an inward facing conformation, which seal the translocation pathway to the interior and exterior of the cell, respectively. It is not clear how the conformational switch is triggered in neurotransmitter/sodium symporters, but Na+ is likely to play an essential role. Here, we focused on Glu136 of the serotonin transporter (SERT); this residue is conserved in transmembrane domain 2 of neurotransmitter/sodium symporters and related proteins. Three substitutions were introduced, resulting in SERT-E136D, SERT-E136Q, and SERT-E136A, which were all correctly inserted into the plasma membrane. SERT-E136Q and SERT-E136A failed to support substrate influx into cells, whereas SERT-E136D did so at a reduced rate. Binding experiments with the inhibitor 2beta-[3H]carbomethoxy-3beta-(4-iodophenyl)tropane (beta-[3H]CIT) supported the conjecture that the mutant transporters preferentially adopted the inward facing conformation: beta-[3H]CIT interacted with SERT in a manner consistent with binding to the outward facing state. Accordingly, the Na+-induced acceleration of beta-[3H]CIT association was most pronounced in wild-type SERT, followed by SERT-E136D > SERT-E136Q > SERT-E136A. Similarly, SERT-E136Q supported substrate efflux in a manner indistinguishable from wild-type SERT, whereas SERT-E136A was inactive. Thus, in the absence of Glu136, the conformational equilibrium of SERT is shifted progressively (SERT-E136D > SERT-E136Q > SERT-E136A) to the inward facing conformation.  相似文献   

16.
The thiol reagent N-ethylmaleimide (NEM) is known to inhibit irreversibly ligand binding by the norepinephrine transporter (NET), while the simultaneous presence of NET substrates or ligands protects from this inhibition. Therefore, cysteine residues located within the substrate binding pocket of the NET were assumed to play an important role in ligand binding. To examine which (if any) of the 10 cysteines (Cys) of the human (h) NET might be involved in transport and/or binding function, we mutated all hNET cysteines to alanine. Using transfected HEK293 cells we studied NEM effects on the hNET with respect to [3H]nisoxetine binding. Two cysteines (Cys176 and Cys185) within the extracellular loop of the NET have been proposed to form a disulfide bond. We could demonstrate that this is of crucial importance as corresponding hNET mutants, in which these cysteines have been replaced, showed a lack of plasma membrane expression. However, due to their oxidized state in the native NET protein, Cys176 and Cys185 may not be targets for NEM. All other Cys-to-Ala hNET mutants were fully active and showed no change in inhibition of [3H]nisoxetine binding by NEM. These observations clearly exclude cysteines as being involved in hNET ligand binding. Since NEM also interacts with histidin (His), we mutated all 13 histidins of the hNET to alanine and examined the NET mutants in functional and binding assays. His222 within the large extracellular loop of the transporter was identified as an interaction partner of NEM since in the corresponding hNET mutant NEM exhibited a significantly reduced inhibitory potency. Furthermore, we could show that histidins in position 296, 370 and 372 are important for nisoxetine binding, while His220, 441, 598 and 599 are crucial for plasma membrane expression of the hNET.  相似文献   

17.
Cytolysin-induced membrane damage (which requires low Ca2+) has been studied 1) in E by assay of hemolysis, 2) in Lettre cells by measurement of transmembrane potential, intracellular content of K+ and Na+, leakage of phosphoryl[3H]choline or 51Cr from [3H]choline-labeled or 51CrO4(2-)-labeled cells and leakage of lactate dehydrogenase, and 3) in phospholipid bilayers by measurement of electrical conductivity changes. In Lettre cells, damage is restricted and reversible: little lactate dehydrogenase leaks from cells that leak substantial amounts of Na+, K+, and phosphoryl[3H]choline; at low amounts of cytolysin, membrane potential and intracellular content of Na+ and K+ recover within minutes. In E and Lettre cells, membrane damage is inhibited by Zn2+, by high Ca2+, or by low pH. Inhibition is reversible: addition of EGTA to Zn2+-protected E or Lettre cells (incubated in the presence of cytolysin, low Ca2+ and Zn2+) initiates leakage; removal of Zn2+ (and cytolysin and Ca2+) by washing also initiates leakage; such leakage is again sensitive to Zn2+, high Ca2+, or H+. In phospholipid bilayers, channels induced by cytolysin (at low Ca2+) are partially closed by negative voltage; Ca2+, Zn2+, or H+ promote channel closure. Channels are re-opened (only partially in the case of Zn2+) by positive voltage. From all these results it is concluded that the action of cytolysin on membranes is similar to that of other pore-forming agents: damage does not necessarily lead to lysis of nucleated cells, and can be prevented by Ca2+, Zn2+, or H+.  相似文献   

18.
Synthesis and release of [3H]acetylcholine ([3H]ACh) were measured in synaptosomes from the guinea pig cerebral cortex after preloading with [3H]choline ([3H]Ch). We demonstrate here that inhibition of choline (Ch) efflux results in an increase in acetylcholine (ACh) synthesis and release. Our findings are as follows: (1) inhibition of [3H]Ch efflux by hemicholinium-3 (HC-3) (100 microM), increased the levels of both the released (116% of control) and the residing (115% of control) [3H]ACh. (2) The muscarinic agonist, McN-A-343 (100 microM), which was previously shown to inhibit Ch efflux, also increased the released (121% of control) and the residing (109% of control) [3H]ACh. (3) Omission of Na+ ions (which are required for Ch transport) from the incubation medium had similar effects to those observed with McN-A-343 and HC-3. These results suggest inverse relationships between Ch efflux on one hand, and ACh synthesis and release on the other hand. (4) Depolarization with 50 mM K+, or with the K+ channel blocker, 4-aminopyridine (100 microM), also increased the total level of [3H]ACh (113 and 107% of nondepolarized synaptosomes, respectively). However, whereas conditions that inhibit Ch transport such as HC-3, McN-A-343 and "no sodium" increased both the residing and the released [3H]ACh depolarization with high K+ or 4-aminopyridine reduced the residing (79 and 87% of control, respectively) and increased only the released [3H]ACh (182 and 148% of control, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Endogenous divalent cations, such as Mg2+, Ca2+, and Zn2+, differentially affected the binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne maleate ([3H]MK-801) to an ion channel associated with an N-methyl-D-aspartate-sensitive subclass of excitatory amino acid receptors in different preparations of brain synaptic membranes. Both Mg2+ and Ca2+ were weak inhibitors of the binding in membranes which had not been extensively washed (nonwashed membranes), over a concentration range effective in markedly potentiating the binding in the absence of any added stimulants in membranes which had been extensively washed, but not treated with a detergent (untreated membranes). In membranes extensively washed and treated with Triton X-100 (Triton-treated membranes), both cations significantly potentiated the binding in the presence of added glutamate alone. In contrast, Zn2+ was invariably active as a potent inhibitor of the binding irrespective of the membrane preparations used. In untreated membranes, Ca2+ markedly accelerated the initial association rate of [3H]MK-801 binding without affecting the binding at equilibrium in a manner similar to that found with glycine, as well as with glutamate; Mg2+, however, facilitated the initial association rate with a concomitant reduction of the binding at equilibrium. Zn2+ was effective in accelerating the initial rapid phase of association, with the initial slow phase being delayed, and in markedly reducing the binding at equilibrium. Both Mg2+ and Ca2+ also facilitated dissociation of the bound [3H]MK-801 and Zn2+ slowed the dissociation in untreated membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号