首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha?1 y?1, whereas no significant change was detected in old-growth forests (+0.28; ?0.72 to 1.29 Mg ha?1 y?1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass.  相似文献   

2.
使用1987—2011年Landsat TM/ETM+稠密时间序列数据,以南京市老山林场和紫金山森林为研究对象,通过Ledaps预处理系统生成地表反射率数据集,采用植被变化追踪模型(VCT)得到南京城市森林的干扰及恢复历史数据库产品,并对产品进行验证.结果表明: 空间一致性为65.4%~95.0%,VCT产品监测森林干扰具有较高的空间一致性.2个研究区的森林干扰和恢复随着时间变化波动明显,干扰变化规律相似,但森林恢复规律明显不同.紫金山的森林覆盖率小于老山林场,但总体上,老山林场的森林干扰率和恢复率大于紫金山.  相似文献   

3.
Investigations of biophysical changes on earth caused by anthropogenic disturbance provide governments with tools to generate sustainable development policy. Canada currently experiences one of the fastest rates of boreal forest disturbance in the world. Plans to conserve the 330 000 km2 boreal forest in the province of Alberta exist but conservation targets and schedules must be aligned with rates of forest disturbance. We explore how disturbance rate, and the accuracy with which we detect it, may affect conservation success. We performed a change detection analysis from 1992 to 2008 using Landsat and SPOT satellite image data processing. Canada's recovery strategy for boreal caribou (Rangifer tarandus caribou) states that ≤35% of a caribou range can be either burned or within 500 m of a man‐made feature for caribou to recover. Our analyses show that by 2008 78% of the boreal forest was disturbed and that, if the current rate continues, 100% would be disturbed by 2028. Alberta plans to set aside 22% for conservation in a region encompassing oil sands development to balance economic, environmental, and traditional indigenous land‐use goals. Contrary to the federal caribou recovery strategy, provincial conservation plans do not consider wildfire a disturbance. Based on analyses used in the provincial plan, we apply a 250 m buffer around anthropogenic footprints. Landsat image analysis indicates that the yearly addition of disturbance is 714 km2 (0.8%). The higher resolution SPOT images show fine‐scale disturbance indicating that actual disturbance was 1.28 times greater than detected by Landsat. If the SPOT image based disturbance rates continue, the 22% threshold may be exceeded within the next decade, up to 20 years earlier than indicated by Landsat‐based analysis. Our results show that policies for sustainable development will likely fail if governments do not develop time frames that are grounded by accurate calculations of disturbance rates.  相似文献   

4.
Anthropogenic and natural forest disturbance cause ecological damage and carbon emissions. Forest disturbance in the Amazon occurs in the form of deforestation (conversion of forest to non‐forest land covers), degradation from the extraction of forest resources, and destruction from natural events. The crucial role of the Amazon rainforest in the hydrologic cycle has even led to the speculation of a disturbance “tipping point” leading to a collapse of the tropical ecosystem. Here we use time series analysis of Landsat data to map deforestation, degradation, and natural disturbance in the Amazon Ecoregion from 1995 to 2017. The map was used to stratify the study area for selection of sample units that were assigned reference labels based on their land cover and disturbance history. An unbiased statistical estimator was applied to the sample of reference observations to obtain estimates of area and uncertainty at biennial time intervals. We show that degradation and natural disturbance, largely during periods of severe drought, have affected as much of the forest area in the Amazon Ecoregion as deforestation from 1995 to 2017. Consequently, an estimated 17% (1,036,800 ± 24,800 km2, 95% confidence interval) of the original forest area has been disturbed as of 2017. Our results suggest that the area of disturbed forest in the Amazon is 44%–60% more than previously realized, indicating an unaccounted for source of carbon emissions and pervasive damage to forest ecosystems.  相似文献   

5.
The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, based on monitoring data gathered over 3–16 years in forests covering the first 25 years of succession. We estimated standing biomass, annual biomass change, and contributions of tree growth, recruitment, and mortality. We also evaluated tree species’ contributions to biomass dynamics. Absolute rates of biomass change were lower in dry forests, 2.3 and 1.9 Mg ha?1 y?1, after 5–15 and 15–25 years after abandonment, respectively, than in wet forests, with 4.7 and 6.1 Mg ha?1 y?1, in the same age classes. Biomass change was largely driven by tree growth, accounting for at least 48% of biomass change across forest types and age classes. Mortality also contributed strongly to biomass change in wet forests of 5–15 years, whereas its contribution became important later in succession in dry forests. Biomass dynamics tended to be dominated by fewer species in early-successional dry than wet forests, but dominance was strong in both forest types. Overall, our results indicate that biomass dynamics during succession are faster in Neotropical wet than dry forests, with high tree mortality earlier in succession in the wet forests. Long-term monitoring of second-growth tropical forest plots is crucial for improving estimates of annual biomass change, and for enhancing understanding of the underlying mechanisms and demographic drivers.  相似文献   

6.
Assessment of forest carbon (C) stock and sequestration and the influence of forest harvesting and climatic variations are important issues in global forest ecology. Quantitative studies of the C balance of tropical forests, such as those in Papua New Guinea (PNG), are also required for forest-based climate change mitigation initiatives. We develop a hierarchical Bayesian model (HBM) of aboveground forest C stock and sequestration in primary, selectively harvested, and El Niño Southern Oscillation (ENSO)-effected lowland tropical forest from 15 years of Permanent Sample Plot (PSP) census data for PNG consisting of 121 plots in selectively harvested forest, and 35 plots in primary forest. Model parameters indicated: C stock in aboveground live biomass (AGLB) of 137 ± 9 (95% confidence interval (CI)) MgC ha?1 in primary forest, compared with 62 ± 18 MgC ha?1 for selectively harvested forest (55% difference); C sequestration in primary forest of 0.23 ± 1.70 MgC ha?1 y?1, which was lower than in selectively harvested forest, 1.12 ± 3.41 MgC ha?1 y?1; ENSO-induced fire resulted in significant C emissions (?6.87 ± 3.94 MgC ha?1 y?1). High variability between PSPs in C stock and C sequestration rates necessitated random plot effects for both stock and sequestration. The HBM approach allowed inclusion of hierarchical autocorrelation, providing valid CIs on model parameters and efficient estimation. The HBM model has provided quantitative insights on the C balance of PNG’s forests that can be used as inputs for climate change mitigation initiatives.  相似文献   

7.
Abstract

Conservation strategies increasingly refer to indicators derived from large biological data. However, such data are often unique with respect to scale and species groups considered. To compare richness patterns emerging from different inventories, we analysed forest species richness at both the landscape and the community scales in Switzerland. Numbers of forest species were displayed using nationwide distributional species data and referring to three different definitions of forest species. The best regression models on a level of four predictor variables ranged between adj. R 2 = 0.50 and 0.66 and revealed environmental heterogeneity/energy, substrate (rocky outcrops) and precipitation as best explanatory variables of forest species richness at the landscape scale. A systematic sample of community data (n = 729; 30 m2, 200 m2, 500 m2) was examined with respect to nationwide community diversity and plot species richness. More than 50% of all plots were assigned to beech forests (Eu-Fagion, Cephalanthero-Fagion, Luzulo-Fagion and Abieti-Fagion), 14% to Norway spruce forests (Vaccinio-Piceion) and 13% to silver fir forests (Piceo-Abietion). Explanatory variables were derived from averaged indicator values per plot, and from biophysical and disturbance factors. The best models for plot species richness using four predictor variables ranged between adj. R 2 = 0.31 and 0.34. Light (averaged L-indicator, tree canopy) and substrate (averaged R-indicator and pH) had the highest explanatory power at all community scales. By contrast, the influence of disturbance variables was very small, as only a small portion of plots were affected by this factor. The effects of disturbances caused by extreme events or by management would reduce the tree canopies and lead to an increase in plant species richness at the community scale. Nevertheless, such community scale processes will not change the species richness at the landscape scale. Instead, the variety of different results derived from different biological data confirms the diversity of aspects to consider. Therefore, conservation strategies should refer to value systems.  相似文献   

8.
Plinio Sist  Ervan Rutishauser  Marielos Peña-Claros  Alexander Shenkin  Bruno Hérault  Lilian Blanc  Christopher Baraloto  Fidèle Baya  Fabrice Benedet  Katia Emidio da Silva  Laurent Descroix  Joice Nunes Ferreira  Sylvie Gourlet-Fleury  Marcelino Carneiro Guedes  Ismail Bin Harun  Riina Jalonen  Milton Kanashiro  Haruni Krisnawati  Mrigesh Kshatriya  Philippa Lincoln  Lucas Mazzei  Vincent Medjibé  Robert Nasi  Marcus Vinicius N. d'Oliveira  Luis C. de Oliveira  Nicolas Picard  Stephan Pietsch  Michelle Pinard  Hari Priyadi  Francis. E. Putz  Ken Rodney  Vivien Rossi  Anand Roopsind  Ademir Roberto Ruschel  Nur Hajar Zamah Shari  Cintia Rodrigues de Souza  Farida Herry Susanty  Eleneide Doff Sotta  Marisol Toledo  Edson Vidal  Thales A.P. West  Verginia Wortel  Toshihiro Yamada 《应用植被学》2015,18(1):171-174
While attention on logging in the tropics has been increasing, studies on the long-term effects of silviculture on forest dynamics and ecology remain scare and spatially limited. Indeed, most of our knowledge on tropical forests arises from studies carried out in undisturbed tropical forests. This bias is problematic given that logged and disturbed tropical forests are now covering a larger area than the so-called primary forests. A new network of permanent sample plots in logged forests, the Tropical managed Forests Observatory (TmFO), aims to fill this gap by providing unprecedented opportunities to examine long-term data on the resilience of logged tropical forests at regional and global scales. TmFO currently includes 24 experimental sites distributed across three tropical regions, with a total of 490 permanent plots and 921 ha of forest inventories.  相似文献   

9.
沈文娟  李明诗 《生态学报》2017,37(5):1438-1449
基于1986年到2011年的Landsat影像,以南方人工林分布区域广东省佛冈县为例,运用Landsat生态系统自适应处理系统(LEDAPS)预处理生成标准的地面反射率数据构建Landsat时间序列堆栈(LTSS)用于Land Trendr算法监测人工林森林干扰与恢复的长时间序列变化,分析了连续24a森林干扰的年份变化、干扰量以及干扰持续的时间,验证了算法识别干扰的精度,并探讨了人工林干扰的驱动力。结果表明佛冈县的森林干扰较为剧烈,一般都在1000 hm~2。而1987、2002、2004、2005、2006、2007和2009年的干扰面积均超过2000 hm~2,其中1987、2007年两年的干扰面积达到6000 hm~2以上。相比森林干扰的变化,佛冈县的森林恢复面积随时间的变化相对平稳。通过对佛冈县森林干扰和恢复面积的趋势分析,发现20世纪80年代末到90年代森林干扰和恢复的面积基本少于2000年以后的变化面积,变化趋势比2000年以后的显得平缓;从2000年开始,森林干扰面积逐渐上升,总体面积变化趋势高于森林的恢复,但森林的恢复面积仍有所提升。其中,佛冈县的森林干扰持续1a时间的面积比例约38%,持续2a时间约28%,持续3a时间约25%,持续4a时间约7%,主要为短期急剧的干扰事件。另外,持续时间为4a以上的森林干扰和恢复的面积在佛冈县不超过100hm~2。2000年之前持续干扰和急剧干扰面积相当,变化比较平缓;到2000年之后,急剧干扰的面积远大于持续干扰,最高约达2800 hm~2,但两者都呈现波动上升的变化趋势。在选取的两个4km~2的样方中,基于影像光谱识别以及通过比对干扰资料的可视化验证方法表明算法结果与真实地表的解译信息较吻合,误差约为0.1km~2。利用长时间序列遥感影像进行森林干扰的自动化监测十分必要,导出的定性、定位与定量信息,一方面为可持续的森林经营奠定基础,另一方面为评价森林生产力与森林碳储量提供有效的数据支撑。  相似文献   

10.
The role of mid‐latitude forests in the sequestration of carbon (C) is of interest to an increasing number of scientists and policy‐makers alike. Net CO2 exchange can be estimated on an annual basis, using eddy‐covariance techniques or from ecological inventories of C fluxes to and from a forest. Here we present an intercomparison of annual estimates of C exchange in a mixed hardwood forest in the Morgan‐Monroe State Forest, Indiana, USA for two years, 1998 and 1999. Based on eddy‐covariance measurements made at 1.8 times canopy height from a tower, C uptake by the forest was 237 and 287 g C m?2 y?1 for 1998 and 1999, respectively. For the same time period, biometric and ecophysiological measures and modelled estimates of all significant carbon fluxes within deciduous forests were made, including: change in living biomass, aboveground and belowground detritus production, foliage consumption, and forest floor and soil respiration. Using this ecological inventory method for these same two time periods, C uptake was estimated to be 271 and 377 g C m?2 y?1, which are 14.3% and 31.4% larger, respectively, than the tower‐based values. The relative change between this method's annual estimates is consistent with that of the eddy‐covariance based values. Our results indicate that the difference in annual C exchange rates was due to reduced heterotrophic soil respiration in 1999.  相似文献   

11.
Our knowledge of temperate broadleaf forest ecology is based mostly on the study of production forests, which lack the terminal stage of forest development and have a simpler stand structure than old-growth and primeval forests. How primeval and production forests differ in net primary production (NPP) is not well known. In three primeval and three nearby production forests of European beech (Fagus sylvatica) in the Slovakian Carpathians, we measured aboveground biomass stocks (live and dead), aboveground NPP (ANPP) and parameters characterizing canopy structural diversity (leaf area index and its spatial variation). Our study aims were (1) to explore the role of canopy structural diversity for ANPP and (2) to assess evidence of a productivity decline in the terminal stage. While aboveground live biomass stocks were on average 20% greater in the primeval forests (386 vs. 320 Mg ha?1; insignificant difference at two sites), deadwood mass stocks were on average four times larger than in the production forests (86 vs. 19 Mg ha?1). ANPP was similarly high in the primeval and production forests (10.0 vs. 9.9 Mg ha?1 y?1) and did not decrease towards the terminal stage. Production models indicate that, in the primeval forests, about 10% of ANPP (ca. 1 Mg ha?1 y?1) was generated by effects related to leaf area heterogeneity, evidencing a positive effect of structural diversity on forest productivity, even though species diversity was low. This study helps to better understand the impact of forest management on the productivity and carbon storage in temperate woodlands.  相似文献   

12.
Invasive species are widely recognized as altering species and community dynamics, but their impacts on biogeochemical cycling and ecosystem processes are less understood. The emerald ash borer (Agrilus planipennis Fairmaire) is a phloem feeding beetle that was inadvertently introduced to the US in the 1990s and relies solely on ash trees (Fraxinus spp.) to complete its life cycle. Ash trees have a wide geographic distribution and are an important component of many different forest types in the US. The larval feeding behavior of the emerald ash borer (EAB) effectively girdles the tree’s phloem tissue resulting in tree mortality in as little as 2 years and stand mortality in as little as 5 years. Using the forest inventory and analysis database, we found that forest lands in the lower 48 states hold approximately 8.7 billion ash trees and saplings, which represent ~2.5 % of the aboveground forest carbon mass. Furthermore, we measured tree growth in 7 EAB impacted and 5 non-EAB impacted temperate forests in the Midwestern United States to quantify the impacts of EAB induced tree mortality on tree growth. We hypothesized that the initial C lost would be partly compensated for by the enhanced non-ash tree growth in EAB-impacted regions relative to non-EAB impacted regions. The EAB disturbance enhanced growth of non-ash trees in the EAB impacted region relative to the non-EAB impacted region. Results also indicate that in EAB impacted areas, growth of trees from the genera Acer and Ulmus responded most positively. Finally, we quantified annual biometric net primary productivity of the EAB impacted forests and compared these quantities to modeled growth of these forests in the absence of EAB and found that large scale ash tree mortality has reduced short term regional forest productivity. The loss of ash biometric net primary productivity is, in part compensated by enhanced growth of non-ash species. As expected, EAB disturbance severity was greater in forests with higher basal areas of ash. This study illustrates the ecosystem and regional scale impacts of invasive pest-induced disturbance on biogeochemical cycling and forest species composition.  相似文献   

13.
This paper presents CO2 flux data from 18 forest ecosystems, studied in the European Union funded EUROFLUX project. Overall, mean annual gross primary productivity (GPP, the total amount of carbon (C) fixed during photosynthesis) of these forests was 1380 ± 330 gC m?2 y?1 (mean ±SD). On average, 80% of GPP was respired by autotrophs and heterotrophs and released back into the atmosphere (total ecosystem respiration, TER = 1100 ± 260 gC m?2 y?1). Mean annual soil respiration (SR) was 760 ± 340 gC m?2 y?1 (55% of GPP and 69% of TER). Among the investigated forests, large differences were observed in annual SR and TER that were not correlated with mean annual temperature. However, a significant correlation was observed between annual SR and TER and GPP among the relatively undisturbed forests. On the assumption that (i) root respiration is constrained by the allocation of photosynthates to the roots, which is coupled to productivity, and that (ii) the largest fraction of heterotrophic soil respiration originates from decomposition of young organic matter (leaves, fine roots), whose availability also depends on primary productivity, it is hypothesized that differences in SR among forests are likely to depend more on productivity than on temperature. At sites where soil disturbance has occurred (e.g. ploughing, drainage), soil espiration was a larger component of the ecosystem C budget and deviated from the relationship between annual SR (and TER) and GPP observed among the less‐disturbed forests. At one particular forest, carbon losses from the soil were so large, that in some years the site became a net source of carbon to the atmosphere. Excluding the disturbed sites from the present analysis reduced mean SR to 660 ± 290 gC m?2 y?1, representing 49% of GPP and 63% of TER in the relatively undisturbed forest ecosystems.  相似文献   

14.
The invasion of non-indigenous plant species poses a severe threat to native plant communities. Garlic mustard (Alliaria petiolata) is a naturalized European biennial herb that has spread rapidly through the eastern US and adjacent Canada. To determine garlic mustard rate of spread, eleven permanent plots (50×25 m) were located in seven high quality (relatively undisturbed) forests in the early stages of invasion. Garlic mustard presence was recorded within six 50×2 m permanent belt transects, and density and percent cover by age class were recorded in 36 permanent 1 m2 quadrats, between 1989 and 1992, and again in 1997. Garlic mustard spread at an average rate of 5.4 m per year between 1989 and 1992, in all plots combined. Within individual plots rate of spread varied substantially, with location of the front increasing up to 36 m and decreasing as much as 18 m between years. While the front alternately advanced and retreated, over time garlic mustard consistently advanced through all forests. Rate of spread was influenced by establishment of satellite populations, and disturbance (wind-throw and flooding). The pattern of spread within plots was one of a ragged advancing front, supplemented by establishment of satellite populations 6–40 m distant from the front, which then coalesced with the main population. Garlic mustard presence between 1989 and 1997 increased significantly within all plots, and in each age class within each plot. The greatest increases occurred in plots where this plant was initially rarest. Garlic mustard cover and density varied nonsignificantly during the same time period. These results indicate that after garlic mustard invades a forest it becomes a permanent part of the community, annually increasing in presence but fluctuating in cover and density. Garlic mustard maintains a low profile under low disturbance conditions, but increases rapidly with periodic disturbance. This study monitored garlic mustard invasion in high quality relatively undisturbed forests, and may underestimate the rate of spread in low quality highly disturbed forests.  相似文献   

15.
Harvesting forests introduces substantial changes to the ecosystem, including physical and chemical alterations to the soil. In the Northeastern United States, soils account for at least 50% of total ecosystem C storage, with mineral soils comprising the majority of that storage. However, mineral soils are sometimes omitted from whole‐system C accounting models due to variability, lack of data, and sample collection challenges. This study aimed to provide a better understanding of how forest harvest affects mineral soil C pools over the century following disturbance. We hypothesized that mineral soil C pools would be lower in forests that had been harvested in the last one hundred years vs. forests that were >100 years old. We collected mineral soil cores (to 60 cm depth) from 20 forest stands across the Northeastern United States, representing seven geographic areas and a range of times since last harvest. We compared recently harvested forests to >100‐year‐old forests and used an information theoretic approach to model C pool dynamics over time after disturbance. We found no significant differences between soil C pools in >100‐year‐old and harvested forests. However, we found a significant negative relationship between time since forest harvest and the size of mineral soil C pools, which suggested a gradual decline in C pools across the region after harvesting. We found a positive trend between C : N ratio and % SOM in harvested forests, but in >100‐year‐old forests a weak negative trend was found. Our study suggests that forest harvest does cause biogeochemical changes in mineral soil, but that a small change in a C pool may be difficult to detect when comparing large, variable C pools. Our results are consistent with previous studies that found that soil C pools have a gradual and slow response to disturbance, which may last for several decades following harvest.  相似文献   

16.
Elevated levels of inorganic nitrogen (N) deposition and earthworm invasion have the potential to alter N dynamics in eastern North American temperate forests. A regional comparison was conducted across 21 sugar maple (Acer saccharum Marsh) stands in southern Ontario, where forest floor C:N ratios ranged from 17 to 38 showed that, similar to many other studies, rates of potential net mineralization and nitrification increased below a forest floor C:N ratio threshold of approximately 25 and that nitrification rates are positively correlated with foliar N concentration. However, detailed measurements at four representative stands, receiving between 9.8 and 19 kg N ha?1 y?1 in throughfall, showed that foliar N levels were highest at the site with the lowest N deposition. The primary difference amongst these sites was the presence of invasive earthworms. Specifically, sites without earthworms had significantly higher forest floor N with a lower C:N ratio than the sites with earthworms. There was no significant difference in the rate of sugar maple litter decomposition or chemistry amongst the sites assessed after 540 days using fine (2-mm mesh) litter bags, suggesting that differences in forest floor N levels were most likely due to consumption of litter by large earthworm species and that the lower C:N ratio of the forest floor in sites without earthworms is brought about primarily by a much longer residence time. This work supports the conclusions that forest floor N concentration (or C:N ratio) has a very strong control on N dynamics in forests, but shows that the presence of earthworms can have an impact on forest floor C:N ratio and hence N dynamics that is greater than current levels of atmospheric inorganic N deposition in temperate forests of Ontario.  相似文献   

17.
The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km2 of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.  相似文献   

18.
Losses of nitrogen (N) often follow severe disturbance of forest ecosystems. In tropical forests, losses of N associated with the disturbance of clearing may be particularly important because rates of soil N cycling are high and forest clearing now occurs on a large scale. We measured soil solution inorganic N concentrations and fluxes for 1 year in an intact forest in the Brazilian Amazon state of Rondônia and in an adjacent 3-ha forest plot that was cleared for pasture by cutting, burning and planting pasture grass and in established cattle pastures on the same soils that were 5 and 22 years old. The cleared forest had higher soil solution NO 3 ? concentrations than the intact forest, but the difference between the cleared and control forests declined with time after the start of the first post-clearing rainy season. Established pastures had much lower solution NH 4 + and NO 3 ? concentrations than forest or cleared forest. Estimated annual dissolved inorganic solution N fluxes to below 1 m during the first year after clearing were 2.5 kg ha?1 in forest and 24.4 kg ha?1 in newly cleared forest compared with only 0.5–1.2 kg ha?1 in established pastures. The solution fluxes from cleared forest during the first year after clearing were approximately 7 times greater than gaseous N oxide (N2O+NO) losses estimated for the same time. These results were consistent with the characterization of moist tropical forests on weathered soils as N-rich and likely to respond to disturbances that elevate soil N availability with increased loss to both soil solution and the atmosphere. These results also suggest that the relative increase in N oxide loss is substantially less than the increase solution inorganic N loss.  相似文献   

19.
The critical role of forests in the global carbon cycle is well known, but significant uncertainties remain about the specific role of disturbance, in part because of the challenge of incorporating spatial and temporal detail in the characterization of disturbance processes. In this study, we link forest inventory data to remote sensing data to derive estimates of pre- and post-disturbance biomass, and then use near-annual remote sensing observations of forest disturbance to characterize biomass loss associated with disturbance across the conterminous U.S. between 1986 and 2004. Nationally, year-to-year variability in the amount of live aboveground carbon lost as a result of disturbance ranged from a low of 61 T g C (±16) in 1991 to a high of 84 T g C (±33) in 2003. Eastern and western forest strata were relatively balanced in terms of their proportional contribution to national-level trends, despite eastern forests having more than twice the area of western forests. In the eastern forest stratum, annual biomass loss tracked closely with the area of disturbance, whereas in the western forest stratum, annual biomass loss showed more year-to-year variability that did not directly correspond to the area of disturbance, suggesting that the biomass density of forests affected by disturbance in the west was more spatially and temporally variable. Eastern and western forest strata exhibited somewhat opposing trends in biomass loss, potentially corresponding to the implementation of the Northwest Forest Plan in the mid 1990s that resulted in a shift of timber harvesting from public lands in the northwest to private lands in the south. Overall, these observations document modest increases in disturbance rates and associated carbon consequences over the 18-year period. These changes are likely not significant enough to weaken a growing forest carbon sink in the conterminous U.S. based largely on increased forest growth rates and biomass densities.  相似文献   

20.
The exchange of CH4 between tropical forests and the atmosphere was determined by simultaneously measuring the net CH4 flux at the soil surface and assessing the flux contribution from soil-feeding termite biomass, both within the soil profile and in mounds. In Cameroon the flux of CH4 ranged from a net emission of 40.7 ng m–2 s–1 to a net CH4 oxidation of –53.0 ng m–2 s–1. Soil-inhabiting termite biomass was significantly correlated with CH4 flux. Termite mounds emitted up to 2000 ng s–1 mound–1. Termite-derived CH4 emission reduced the soil sink strength by up to 28%. Disturbance also had a strong effect on the soil sink strength, with the average rate of CH4 oxidation, at – 17.5 ng m–2 s–1, being significantly smaller (≈ 36%) at the secondary forest site than the –27.2 ng m–2 s–1, observed at the primary forest site. CH4 budgets calculated for each site indicated that both forests were net sinks for CH4 at – 6.1 kg ha–1 y–1 in the near-primary forest and – 3.1 kg ha–1 y–1 in the secondary forest. In Borneo, three forest sites representing a disturbance gradient were examined. CH4 oxidation rates ranged from 0 to – 32.1 ng m–2s–1 and a significant correlation between the net flux and termite biomass was observed only in an undisturbed primary forest, although the biomass was insufficient to cause net emission of CH4. Rates of CH4 oxidation were not significantly different across the disturbance gradient but were, however, larger in the primary forest (averaging – 15.4 ng m–2 s–1) than in an old-growth secondary forest (–13.9 ng m–2s–1) and a young secondary re-growth (– 10.8 ng m–2s–1). CH4 flux from termite mounds ranged from net oxidation in an abandoned mound to a maximum emission of 468 ng s–1 mound–1. CH4 budgets calculated for each site indicated that CH4 flux from termite mounds had an insignificant effect on the budget of CH4 at the regional scale at all three forest sites. Annual oxidation rates were – 4.8, – 4.2 and – 3.4 kg ha–1 y–1 in the primary, secondary and young secondary forests, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号