首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The accumulation and decomposition of coarse woody debris (CWD) are processes that affect habitat, soil structure and organic matter inputs, and energy and nutrient flows in forest ecosystems. Natural disturbances such as fires typically produce large quantities of CWD as trees fall and break, whereas human disturbances such as timber harvesting remove much of the CWD. Our objective was to compare the amount of CWD removed and left behind after clear-cutting to the amount consumed and left behind after natural fires in Rocky Mountain lodgepole pine. The masses of fallen logs, dead-standing trees, stumps, and root crowns more than 7.5 cm in diameter were estimated in clear-cut and intact lodgepole pine forests in Wyoming and compared to estimates made in burned and unburned stands in Yellowstone National Park (YNP), where no timber harvesting has occurred. Estimates of downed CWD consumed or converted to charcoal during an intense crown fire were also made in YNP. No significant differences in biomass of downed CWD more than 7.5 cm in diameter were detected between burned stands and those following a single clear-cut. However, the total mass of downed CWD plus the mass of snags that will become CWD was nearly twice as high in burned stands than in clear-cuts. In YNP, approximately 8% of the downed CWD was consumed by fire and an additional 8% was converted to charcoal, for an estimated loss of about 16%. In contrast, approximately four times more wood (70%) was removed by clear-cutting. Considering all CWD more than 7.5 cm in diameter that was either still present in the stand or removed by harvesting, slash treatment, or burning, clear-cut stands lost an average of 80 Mg ha−1 whereas stands that burned gained an average of 95 Mg ha−1. Some CWD remains as slash and stumps left behind after harvesting, but stands subjected to repeated harvesting will have forest floor and surface soil characteristics that are beyond the historic range of variability of naturally developing stands. Received 16 November 1999; Accepted 31 May 2000.  相似文献   

2.
Abstract Coarse woody debris (CWD) is the standing and fallen dead wood in a forest and serves an important role in ecosystem functioning. There have been several studies that include estimates of CWD in Australian forests but little synthesis of these results. This paper presents findings from a literature review of CWD and fine litter quantities. Estimates of forest‐floor CWD, snags and litter from the literature are presented for woodland, rainforest, open forest and tall open forest, pine plantation and native hardwood plantation. Mean mass of forest floor CWD in Australian native forests ranged from 19 t ha?1 in woodland to 134 t ha?1 in tall open forest. These values were generally within the range of those observed for similar ecosystems in other parts of the world. Quantities in tall open forests were found to be considerably higher than those observed for hardwood forests in North America, and more similar to the amounts reported for coniferous forests with large sized trees on the west coast of the USA and Canada. Mean proportion of total above‐ground biomass as forest floor CWD was approximately 18% in open forests, 16% in tall open forests, 13% in rainforests, and 4% in eucalypt plantations. CWD can be high in exotic pine plantations when there are considerable quantities of residue from previous native forest stands. Mean snag biomass in Australian forests was generally lower than the US mean for snags in conifer forests and higher than hardwood forest. These results are of value for studies of carbon and nutrient stocks and dynamics, habitat values and fire hazards.  相似文献   

3.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   

4.
The rate at which CO2 is released from woody debris post-clearcut affects the long term carbon consequences of such disturbances. Changes in microclimate post-clearcut may alter the rate of woody debris decomposition from that in a mature forest. However, very few studies have explored post-disturbance rates of woody debris respiration and the possible influence of an altered microclimate, and even fewer have considered the role of log position in influencing rates of respiration. This study explored the effects of log position and microclimate variability on the rates of coarse woody debris (CWD) respiration. The rates of respiration of downed Norway spruce (Picea abies) logs were repeatedly measured in situ using an LI-6200 gas analyzer. Treatments included native logs in the clearcut site, native logs in a neighboring mature spruce stand, and logs transferred from the clearcut site to the mature spruce stand. The transfer logs showed the highest rates of respiration (0.44 ± 0.03 g COm?2 log surface h?1), followed by the clearcut logs (0.36 ± 0.02 g CO2 m?2 log surface h?1), and spruce stand logs (0.30 ± 0.02 g CO2 m?2 log surface h?1) (P < 0.01). The boost in respiration found in the transfer treatment group was best explained by increases in log water content, while the slower rate of respiration in the spruce stand logs was best explained by the log’s contact/non-contact with the ground prior to the start of the observational campaign. CWD respiration was found to represent 18 ± 3 % of total daytime ecosystem respiration (R eco).  相似文献   

5.
Forest litter plays an important role in determining nutrient cycling, balance and maintaining ecosystem function of forest ecosystems. Studies have shown that litter substrate quality is one of the most important factors affecting litter decomposition in a given area. It is, hence, important to understand the factors controlling litter decomposition in the late decomposition stage and determining organic matter changes over the duration of litter decomposition. Decomposition rate of mixed litter may differ with that of a single specie litter. Supply of soil nutrients is an important factor controlling litter decomposition rate, because the essential nutrients in soil or litter material influence community and activity of decomposers (soil organisms). There were clear relationships among soil nutrient, litter substrate quality, and decomposition. Soil nutrient contents were positively correlated with litter substrate quality, showing that higher contents of soil nutrient were accompanied with good quality of litter substrate, and lower soil nutrients with poor litter quality. The effects of soil fertility on litter decomposition rate varied with environmental conditions. It was reported that litter quality regulates the early stage of carbon decomposition and its accumulation in soil, however, it could not predict the long-term dynamics of soil organic carbon. Hence, the formation and stabilization of soil organic carbon are controlled by the quantity of litter input and its interaction with the soil circumstances rather than by the litter quality. The present paper reviewed the research findings about litter decomposition related to litter substrate quality and soil nutrients, including short-term and long-term litter decomposition, decomposition of single-species vs. mixed-litter decomposition and litter nutrients release. The present paper aimed to clarify the relationship between soil nutrients and litter decomposition, which will help to understand forest succession, forest water conservation and soil re-production capacity.  相似文献   

6.
Coarse woody debris (CWD) is a basic component of forest ecosystems and it plays a crucial role in species-poor boreal forests. Generally, previous studies have focused on differences between the forest floor and decaying logs of various tree species. The impact of distance to CWD has been investigated mainly for forest-floor snails and some groups of macrofauna, but not yet for mesostigmatid mites communities. We hypothesized that the effect of CWD decreases with increasing distance from CWD. To test this hypothesis we conducted a study in relatively species-poor Finnish boreal forest (at ca. 100 km northwest of Helsinki). In total, 81 samples were collected in 2007 from nine Scots pine (Pinus sylvestris) stumps, three microhabitats (CWD, soil/litter at 0.5 m from a stump and soil/litter at 1.5 m from a stump) and in three main directions (9 stumps × 3 microhabitats × 3 directions). Overall, 1965 mesostigmatid mites were collected representing 24 species. The mean number of mite species collected was significantly different between decaying stumps and forest litter; however, there was no significant difference between the litter samples at 0.5 and 1.5 m distance. The evenness index was significantly lower for samples collected from stumps than for litter in close (0.5 m) or far (1.5 m) distance. The most frequently encountered mite species were Veigaia nemorensis, Parazercon radiatus and Zercon zelawaiensis.  相似文献   

7.
Corresponding with the increasing global resource demand, harvesting now affects millions of hectares of boreal forest each year, and yet our understanding of harvesting impacts on boreal carbon (C) dynamics relative to wildfire remains unclear. We provide a direct comparison of C stocks following clearcut harvesting and fire over a 27-year chronosequence in the boreal forest of central Canada. Whereas many past studies have lacked measurement of all major C pools, we attempt to provide complete C pool coverage, including live biomass, deadwood, forest floor, and mineral soil C pools. The relative contribution of each C pool to total ecosystem C varied considerably between disturbance types. Live biomass C was significantly higher following harvesting compared with fire because of residual live trees and advanced regeneration. Conversely, most live biomass was killed following fire, and thus post-fire stands contained higher stocks of deadwood C. Snag and stump C mass peaked immediately following fire, but dramatically decreased 8 years after fire as dead trees began to fall over, contributing to the downed woody debris C pool. Forest floor C mass was substantially lower shortly after fire than harvesting, but this pool converged 8 years after fire and harvesting. When total ecosystem C stocks were examined, we found no significant difference during early stand development between harvesting and fire. Maximum total ecosystem C occurred at age 27 years, 185.1 ± 18.2 and 163.6 ± 8.0 Mg C ha?1 for harvesting and fire, respectively. Our results indicate strong differences in individual C pools, but similar total ecosystem C after fire and clearcutting in boreal forests, and shall help improve modeling terrestrial C flux after stand-replacing disturbances.  相似文献   

8.
Litterfall and its subsequent decomposition are important feedback mechanisms in the intrasystem cycling of nutrients in forest ecosystems. The amount of litterfall and the rate of decomposition are expected to vary with stand age and climate. Over a 2-year period, decomposition of five litter types were measured in two second-growth forest stands and one old-growth stand in the Cascade Mountains of southern Washington state, USA. Both second-growth stands were dominated by Douglas-fir [Pseudotsuga menziesii (Mirb.,) Franco] but one had a significant proportion of red alder (Alnus rubra Bong.), a nitrogen (N) fixer. The old-growth stand was dominated by Douglas-fir and western hemlock [Tsuga heterophylla (Raf.) Sarg.]. All stands had a relatively shallow layer of forest floor mass. The five litter types were placed in each stand to evaluate decomposition patterns. Despite significant differences in stand age, microclimate and mean residence times for carbon (C) and N, the rates of litter mass loss varied only slightly between sites. The relative order of species litter mass loss was: vine maple ≫ salal = western hemlock > Douglas-fir (from the youngest stand) > Douglas-fir (from the N rich stand with red alder). The initial litter lignin concentration, not lignin:N, was the primary determinant of decomposition rates, although the initial N concentration was the predictor for mass loss after 2 years in the N rich Douglas-fir-alder stand. All litter types showed immobilization of N for nearly 2 years. Data for Douglas-fir litter suggest that higher levels of N may retard decomposition of tissues with greater amounts of lignified material. The retention of N by the litter appeared influenced by the nutrient capital of the stands as well as the forest floor C:N ratio. Decomposition was minimal during the cold winter months, but displayed a definitive peak period during early Fall with wet weather, warm soils, and fungal activity. Thus, long-term climatic change effects on forest floor C storage may depend more on changes in seasonality of precipitation changes than just temperature changes.  相似文献   

9.
Over the past decades, the tropical mountain rainforest of southern Ecuador has been threatened by conversion to cattle pastures. Frequently, these pastures are invaded by bracken fern and abandoned when bracken becomes dominant. Changes in land-use (forest–pasture–abandoned pasture) can affect soil microorganisms and their physiological responses with respect to soil carbon and nutrient cycling. In situ investigations on litter decomposition and soil respiration as well as biogeochemical characterization of the soil were carried out to identify the driving factors behind. The conversion of forest to pasture induced a pronounced increase in CO2–C effluxes to 12.2 Mg ha?1 a?1 which did not decrease after abandonment. Soil microbial activity and biomass showed a different pattern with lowest values at forest and abandoned pasture sites. With 3445 mg kg?1 (0–5 cm) microbial biomass carbon (MBC by CFE-method), the active pasture had a more than three times higher value than forest and abandoned pasture, which was among the highest in tropical pasture soils. A shift in the microbial community structure (phospholipid fatty acid, PLFA) was also induced by the establishment of pasture land; the relative abundance of fungi and Gram-negative bacteria increased. PLFA fingerprints of the forest organic layer were more similar to pasture than to forest mineral soil. Chemical properties (pH value, exchangeable cations) were the main factors influencing the respective microbial structure. Bracken-invasion resulted in a decrease in the quantity and quality of above- and belowground biomass. The lower organic substance and nutrient availability induced a significant decline in microbial biomass and activity. After pasture abandonment, these differences in soil microbial function were not accompanied by pronounced shifts in the community structure and in soil pH as was shown for the conversion to pasture. A disconnection between microbial structure and function was identified. Similar soil CO2–C effluxes between active and abandoned pasture sites might be explained by an underestimation of the effluxes from the active pasture site. All measurements were carried out between grass tussocks where fine-root density was about 2.6 times lower than below tussocks. Thus, lower proportions of root respiration were expected than below tussocks. Overall, soil microorganisms responded differently to changes in land-use from forest to pasture and from pasture to abandoned pasture resulting in pronounced changes of carbon and nutrient cycling and hence of ecosystem functioning.  相似文献   

10.
Coarse woody debris (CWD) is an important component of the forest carbon cycle, acting as a carbon pool and a source of CO2 in temperate forest ecosystems. We used a soda-lime closed-chamber method to measure CO2 efflux from downed CWD (diameter ≥5 cm) and to examine CWD respiration (R CWD) under field conditions over 1 year in a temperate secondary pioneer forest in Takayama forest. We also investigated tree mortality (input to the CWD pool) from the data obtained from the annual tree census, which commenced in 2000. We developed an exponential function of temperature to predict R CWD in each decay class (R 2 = 0.81–0.97). The sensitivity of R CWD to changing temperature, expressed as Q 10, ranged from 2.12 to 2.92 and was relatively high in decay class III. Annual C flux from CWD (F CWD) was extrapolated using continuous air temperature measurements and CWD necromass pools in the three decay classes. F CWD was 3.0 (class I), 17.8 (class II), and 13.7 g C m?2 year?1 (class III) and totaled 34 g C m?2 year?1 in 2009. Annual input to CWD averaged 77 g C m?2 year?1 from 2000 to 2009. The budget of the CWD pool in the Takayama forest, including tree mortality inputs and respiratory outputs, was 0.43 Mg C ha?1 year?1 (net C sink) owing to high tree mortality in the mature pioneer forest. The potential CWD sink is important for the carbon cycle in temperate successional forests.  相似文献   

11.
Litterfall production, decomposition and nutrient use efficiency in three different tropical forest ecosystems in SW China were studied for 10 years. Annual mean litterfall production in tropical seasonal forest (TSF) (9.47?±?1.65 Mg ha?1) was similar to that in man-made tropical forest (MTF) (9.23?±?1.29 Mg ha?1) (P?>?0.05) but both were significantly lower than that in secondary tropical forest (STF) (12.96?±?1.71 Mg ha?1) (P?<?0.05). The annual variation of litterfall was greater in TSF (17.4%, P?<?0.05) than in MTF (14.0%) or STF (13.2%). The annual mean decomposition rate of litterfall increased followed the order of MTF (2.72)?<?TSF (3.15)?<?STF (3.50) (P?<?0.05), which was not correlated with annual precipitation or annual mean temperature, but was rather related to litter quality. The nutrient use efficiency was found to be element-dependent and to vary significantly among the three forest types (P?<?0.05). These results indicate that litterfall production and decomposition rates in different tropical forest systems are related to plant species composition and are influenced strongly by coexisting species and their life stage (age) but less so by the species richness. Constructing multi-species and multistory man-made tropical forest is an effective way to enhance biological productivity and maintain soil nutrients on degraded tropical land.  相似文献   

12.
全球气候变暖对凋落物分解的影响   总被引:6,自引:0,他引:6  
宋飘  张乃莉  马克平  郭继勋 《生态学报》2014,34(6):1327-1339
凋落物分解作为生态系统核心过程,参与生态系统碳的周转与循环,影响生态系统碳的收支平衡,调控生态系统对全球气候变暖的反馈结果。全球气候变暖通过环境因素、凋落物数量和质量以及分解者3个方面,直接或间接地作用于凋落物分解过程,并进一步影响土壤养分周转和碳库动态。气候变暖可通过升高温度和改变实际蒸散量等环境因素直接作用于凋落物分解。气候变暖可引起植物物种短期内碳、氮和木质素等化学性质的改变以及群落中物种组成的长期变化从而改变凋落物质量。在凋落物分解过程中,土壤分解者亚系统作为主要生命组分(土壤动物和微生物)彼此相互作用、相互协调共同参与调节凋落物的分解过程。凋落物分解可以通过改变土壤微生物量、微生物活动和群落结构来加快微生物养分的固定或矿化,以形成新的养分利用模式来改变土壤有机质从而对气候变化做出响应。未来凋落物分解的研究方向应基于大尺度跨区域分解实验和长期实验,关注多个因子交互影响下,分解过程中碳、氮养分释放、地上/地下凋落物分解生物学过程与联系、分解者亚系统营养级联效应等方面。  相似文献   

13.
Aims Litter decomposition is a critical pathway linking the above- and belowground processes. However, factors underlying the local spatial variations in forest litter decomposition are still not fully addressed. We investigated leaf litter decomposition across contrasting forest stands in central China, with objective to determine the spatial variations and controlling factors in forest floor leaf litter decomposition in relation to changes in forest stands in a temperate forest ecosystem.Methods Leaf litter decomposition was studied by using litterbag method across several typical forest stand types in Baotianman Nature Reserve, central China, including pure stands of Quercus aliena var. acuteserrata, Q. glandulifera var. brevipetiolata and Q. variabilis, respectively, and mixed pine/oak stands dominated by Pinus armandii and Q. aliena var. acuteserrata, as well as stands of pure Q. aliena var. acuteserrata trees ranging in stand age from ~40 to>160 years. Measurements were made on litter mass remaining and changes in litter chemistry during decomposition over a 2-year period, along with data collections on selective biotic and environmental factors. A reciprocal transplant experiment involving Q. aliena var. acuteserrata and Q. variabilis was concurrently carried out to test the occurrence of 'home-field advantage (HFA)' in local forests when only considering contrasting oak tree species. Correlation analyses and path analyses were performed to identify the dominant drivers and their relative contributions to variations in leaf litter decomposition.Important findings Significant variations were found in the rate of leaf litter decomposition among stands of different tree species but not among stand age classes. The values of decay constant, k, varied from 0.62 in Q. aliena var. acuteserrata stands to 0.56 in Q. variabilis stands. The reciprocal litter transplant experiment showed that the rate of leaf litter decomposition was on average 5% slower in home-fields than on reciprocal sites. Path analysis identified litter acid-unhydrolyzable residue (AUR) to N ratio, soil microbial biomass carbon (MBC), soil pH and soil organic carbon (SOC) as most prominent factors controlling the rate of leaf litter decomposition, collectively accounting for 57.8% of the variations; AUR/N had the greatest negative effect on k value, followed by weaker positive effects of SOC and MBC. Our findings suggest that tree species plays a primary role in affecting forest floor leaf litter decomposition by determining the litter quality, with site environment being a secondary factor contributing to the local variations in leaf litter decomposition in this temperate forest ecosystem.  相似文献   

14.
Fonte SJ  Schowalter TD 《Oecologia》2005,146(3):423-431
The role of phytophagous insects in ecosystem nutrient cycling remains poorly understood. By altering the flow of litterfall nutrients from the canopy to the forest floor, herbivores may influence key ecosystem processes. We manipulated levels of herbivory in a lower montane tropical rainforest of Puerto Rico using the common herbivore, Lamponius portoricensis (Phasmatidea), on a prevalent understory plant, Piper glabrescens (Piperaceae), and measured the effects on nutrient input to the forest floor and on rates of litter decomposition. Four treatment levels of herbivory generated a full range of leaf area removal, from plants experiencing no herbivory to plants that were completely defoliated (>4,000 cm2 leaf area removed during the 76-day study duration). A significant (P<0.05) positive regression was found between all measures of herbivory (total leaf area removed, greenfall production, and frass-related inputs) and the concentration of NO 3 in ion exchange resin bags located in the litter layer. No significant relationship was found between any of the herbivory components and resin bag concentrations of NH 4 + or PO 4 . Rates of litter decay were significantly affected by frass-related herbivore inputs. A marginally significant negative relationship was also found between the litter mass remaining at 47 days and total leaf area removed. This study demonstrated a modest, but direct relationship between herbivory and both litter decomposition and NO 3 transfer to the forest floor. These results suggest that insect herbivores can influence forest floor nutrient dynamics and thus merit further consideration in discussions on ecosystem nutrient dynamics.  相似文献   

15.
The removal of timber during harvesting substantially reduces important invertebrate habitat, most noticeably microhabitats associated with fallen trees. Oribatid mite diversity in downed woody material (DWM) using species-level data has not been well studied. We investigated the influence of decaying logs on the spatial distribution of oribatid mites on the forest floor at the sylviculture et aménagement forestiers écosystémique (SAFE) research station in the Abitibi region in NW Québec. In June 2006, six aspen logs were selected for study, and samples were taken at three distances for each log: directly on top of the log (ON), directly beside the log (ADJ) and at least one metre away from the log and any other fallen wood (AWAY). Samples ON logs consisted of a litter layer sample, an upper wood sample and an inner wood sample. Samples at the ADJ and AWAY distances consisted of litter samples and soil cores. The highest species richness was collected ON logs, and logs harboured a distinct oribatid species composition compared to nearby forest floor. There were species-specific changes in abundance with increasing distance away from DWM, which indicates an influence of DWM in structuring oribatid assemblages on the forest floor. Additionally, each layer (litter, wood and soil) exhibited a unique species composition and hosted a different diversity of oribatid mites. This study further highlights the importance of DWM to forest biodiversity by creating habitat for unique assemblages of oribatid mites.  相似文献   

16.
Atmospheric nitrogen deposition increases forest carbon sequestration across broad parts of the Northern Hemisphere. Slower organic matter decomposition and greater soil carbon accumulation could contribute to this increase in carbon sequestration. We investigated the effects of chronic simulated nitrogen deposition on leaf litter and fine root decomposition at four sugar maple (Acer saccharum)-dominated northern hardwood forests. At these sites, we previously observed that nitrogen additions increased soil organic carbon and altered litter chemistry. We conducted a 3-year decomposition study with litter bags. Litter production of leaves and fine roots were combined with decomposition dynamics to estimate how fine roots and leaf litter contribute to soil organic carbon. We found that nitrogen additions marginally stimulated early-stage decomposition of leaf litter, an effect associated with previously documented changes in litter chemistry. In contrast, nitrogen additions inhibited the later stages of fine root decomposition, which is consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, slower fine root decomposition led to additional root mass retention (g m?2), and this greater retention of root residues was estimated to explain 5–51% of previously documented carbon accumulation in the surface soil due to nitrogen additions. Our results demonstrated that simulated nitrogen deposition created contrasting effects on the decomposition of leaf litter and fine roots. Although previous nitrogen deposition studies have focused on leaf litter, this work suggests that slower fine root decomposition is a major driver of soil organic carbon accumulation under elevated nitrogen deposition.  相似文献   

17.
Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha?1 y?1, whereas no significant change was detected in old-growth forests (+0.28; ?0.72 to 1.29 Mg ha?1 y?1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass.  相似文献   

18.
枯落物分解在陆地生态系统物质循环能量流动中起着关键性作用,明确枯落物输入对土壤微生物群落的影响有助于理解土壤微生物生物多样性和陆地生态系统功能的相互关系。本文采用整合分析方法,以中国为研究区域,以不添加枯落物为对照组,探究土壤微生物(真菌、细菌、放线菌)及微生物生物量碳、生物量氮对枯落物输入的响应。结果表明:与不添加枯落物相比,添加枯落物后土壤微生物生物量碳、生物量氮分别显著增加3.9%和4.4%;土壤真菌PLFA、细菌PLFA及总微生物PLFA分别增加4.0%、3.1%和2.4%。枯落物输入对土壤微生物的影响受到气候条件、年降水量、植被类型及土壤酸碱度等因素的显著影响;不同气候类型下,土壤微生物对枯落物输入的响应呈现出亚热带季风气候区>温带季风气候区>温带大陆气候区的趋势,以及随着年降水量的增加呈现出先升高后降低的趋势;不同植被类型下,土壤微生物对枯落物输入的响应呈现出阔叶林>草地≈混交林>针叶林的趋势。  相似文献   

19.
Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface‐dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen‐related traits play a central role in tree composition effects on soil fauna and decomposition.  相似文献   

20.
Coarse woody debris (CWD) plays an important role in long-term carbon storage in forest ecosystems. However, few studies have examined CWD in mangrove forests. A secondary mangrove forest on an estuary of the Trat River showed different structures along vegetation zones ranging from the river’s edge to inland parts of the forest (the SonneratiaAvicennia, Avicennia, Rhizophora, and Xylocarpus zones, respectively). The mass distribution of CWD stock in downed wood and standing dead trees along these vegetation zones was evaluated. Most of the CWD stock in the SonneratiaAvicennia and Avicennia zones was found in downed wood, while it mainly accumulated in standing dead trees in the Rhizophora and Xylocarpus zones. The total mass of CWD stock that accumulated in each zone ranged from 1.56–8.39 t ha?1, depending on the forest structure and inundation regimes. The annual woody debris flux in each zone was calculated by summing the necromass (excluding foliage) of dead trees and coarse litter from 2010 to 2013. The average woody debris flux was 5.4 t ha?1 year?1, and its zonal variation principally depended on the necromass production that resulted from forest succession, high tree-density, and lightning. Over all the zones, the above- and below-ground net primary production (ANPP and BNPP, respectively) was estimated at 18.0 and 3.6 t ha?1 year?1, respectively. The magnitude of BNPP and its contribution to the NPP was markedly increased when fine root production was taken into consideration. The contribution of the woody debris flux without root necromass to the ANPP ranged from 12 to 28%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号