共查询到5条相似文献,搜索用时 0 毫秒
1.
Of the two Taraxacum microspecies used. Taraxacum sellandii Dahlst. usually occurs in grasslands with a high nutrient level; Taraxacum nordstedtii Dahlst. is generally restricted to undisturbed and mineral-poor habitats. Growth response curves for internal N and P were established, based on relative yield of (whole) plant tissue water and (whole plant) internal mineral concentration on a tissue water basis. Critical nutrient concentrations of N and P were determined from the response curves derived. For both macroelements, T. nordstedtii showed lower critical nutrient concentrations. The difference in critical N concentrations coincided with differences in internal NO3 - 3 concentrations between the microspecies. Finally, we discuss the use of tissue water as a (whole) plant growth parameter and internal mineral concentration on tissue water basis as a parameter describing the mineral status. 相似文献
2.
Growth and mineral status of 9 Taraxacum microspecies were studied under mineral stress conditions, using a flowing solution of low nutrient concentration. Relative growth rate of (whole) plant dry weight, leaf area, and (whole) plant tissue water were used to describe growth. For 4 microspecies, specific uptake rates of NO− 3 , H2 PO− 4 , K+ , Mg2+ and Ca2+ were investigated.
The applied nutrient condition clearly discriminated between the studied Taraxacum microspecies. With respect to relative growth rate, 3 groups of microspecies could be distinguished: T. nordstedtii > T. lancidens, T. adamii, T. hollandicum, T. taeniatum > T. sellandii, T. eudontum, T. ekmanii, T. ancistrolobum . These categories coincided well with the mineral ecology of the microspecies, going from infertile to fertile sites.
T. nordstedtii , a microspecies of infertile sites, was most efficient in absorbing NO− 3 , H2 PO− 4 and K+ . T. sellandii and T. eudontum , both occurring in fertile grasslands, showed poor uptake performances for all studied ions. In all Taraxacum microspecies studied, except T. eudontum , internal N concentration appeared to limit growth. Efficiencies in N use, at sub-optimal internal N concentrations, varied with the mineral habitat of the microspecies studied. T. nordstedtii , from infertile sites, and T. sellandii , from fertile sites, were established as high and low extremes, respectively. 相似文献
The applied nutrient condition clearly discriminated between the studied Taraxacum microspecies. With respect to relative growth rate, 3 groups of microspecies could be distinguished: T. nordstedtii > T. lancidens, T. adamii, T. hollandicum, T. taeniatum > T. sellandii, T. eudontum, T. ekmanii, T. ancistrolobum . These categories coincided well with the mineral ecology of the microspecies, going from infertile to fertile sites.
T. nordstedtii , a microspecies of infertile sites, was most efficient in absorbing NO
3.
I. G. Burns 《Plant and Soil》1992,142(2):221-233
A method is described for determining the way in which growth rate varies with plant nutrient concentration using a simple
nutrient interruption technique incorporating only 2 treatments. The method involves measuring the changes in growth and nutrient
composition of otherwise well-nourished plants after the supply of one particular nutrient has been withheld. Critical concentrations
are estimated from the relationship between the growth rate (expressed as a fraction of that for control plants of the same
size which remained well-nourished throughout) and the concentration of the growth-limiting nutrient in the plants as deficiency
developed. Trials of the method using young lettuce plants showed that shoot growth rate was directly proportional to total
N (nitrate plus organic N) concentration, and linearly or near-linearly related to K and P concentration over a wide range;
the corresponding relationship for nitrate was strongly curvi-linear. Critical concentrations (corresponding to a 10% reduction
in growth rate) determined from these results were similar to critical values calculated from models derived from field data,
but were generally higher than published estimates of critical concentration (based on reductions in shoot weight) for plants
of a similar size. Reasons for these discrepancies are discussed. Nitrate, phosphate or potassium concentrations in sap from
individual leaf petioles were highly sensitive to changes in shoot growth rate as deficiency developed, with the slope of
the relationships varying with leaf position, due to differences both in their initial concentration and in the rates at which
they were utilized in individual leaves. Each nutrient was always depleted more quickly in younger leaves than in older ones,
providing earlier evidence of deficiency for diagnostic purposes. Although the plants were capable of accumulating nitrate,
phosphate and potassium well in excess of that needed for optimum dry matter production during periods of adequate supply,
the rate of mobilization of these reserves was insufficient to prevent reductions in growth rate as the plants became deficient.
This brings into question the validity of the conventional concept that luxury consumption provides a store of nutrients which
are freely available for use in times of shortage. The implications of these results for the use of plant analysis for assessing
plant nutrient status are discussed. 相似文献
4.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant. 相似文献
5.
Viola Müller Christa Lankes Benno F. Zimmermann Georg Noga Mauricio Hunsche 《Journal of plant physiology》2013
In the present study we aimed to investigate the relevance of either N, P or K supply for herb and leaf yield and for centelloside concentrations in Centella asiatica L. Urban leaves. In this regard, we elucidated the causal relationship between assimilation rate, leaf N, P and K concentrations, herb and leaf production, and centelloside accumulation. The experiments were conducted consecutively in a greenhouse where C. asiatica was grown in hydroponic culture and fertigated with nutrient solutions at either 0, 30, 60, 100 or 150% of the N, P or K amount in a standard Hoagland solution. In general, the increase in N, P or K supply enhanced assimilation rate and herb and leaf yield. However, exceeding specific thresholds, the high availability of one single nutrient caused lower leaf N concentrations and a decline in assimilation rate and plant growth. Irrespective of N, P and K supply, the leaf centelloside concentrations were negatively associated with herb and leaf yield, which is in accordance with the assumptions of the carbon/nutrient balance and the growth differentiation balance hypotheses. Moreover, we found strong negative correlations between saponins and leaf N concentrations, while the respective sapogenins were negatively correlated with K concentrations. Using C. asiatica as model system, our experiments reveal for the first time that the accumulation of saponins and sapogenins is affected by resource allocation between primary and secondary metabolism and that besides carbon, also nutrient availability is relevant for the regulation of the centelloside synthesis. Finally, our results highlight the huge potential of optimized and carefully controlled mineral nutrition of medicinal plants for steering the bio-production of high-quality natural products. 相似文献