首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

2.

Background

Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities.

Methodology/Principal Findings

We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders).

Conclusions/Significance

Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.  相似文献   

3.
Evidence of the form and function of bipedal behavior in nonhuman primates provides critical evidence to test theories about the origins of hominid bipedalism. Bipedalism has long been considered an evolutionarily interesting but rare behavior in wild chimpanzees. During May 2001, chimpanzees of the Ruhija community in the Bwindi Impenetrable National Park, Uganda, engaged in an exceptional frequency of arboreal bipedalism when feeding in large Ficus trees. Seventy-eight bipedal bouts of at least 5 sec duration were recorded for the entire community (0.49 bouts/hr), with a mean duration of 13.7 sec (+/-1.6 sec). The animals employed many variations on the bipedal postural theme, ranging from erect standing on the largest substrates while grasping overhead limbs for support, to standing on one leg while suspending the other leg in space, to extended-lean standing, in which bipedal standing transitioned into horizontal arm-leg suspension as the animal reached for more distant fruits. Bipedalism was used as part of a behavioral repertoire that integrated brachiation, four-limbed suspension, and forelimb-supported standing for effective small-fruit foraging. These observations suggest that under certain ecological conditions, arboreal bipedalism can be an important posture for wild chimpanzees, and may have been an important behavioral precursor to full terrestrial bipedalism.  相似文献   

4.
The vertical-climbing account of the evolution of locomotor behavior and morphology in hominid ancestry is reexamined in light of recent behavioral, anatomical, and paleontological findings and a more firmly established phylogeny for the living apes. The behavioral record shows that African apes, when arboreal, are good vertical climbers, and that locomotion during traveling best separates the living apes into brachiators (gibbons), scrambling/climbing/brachiators (orangutans), and terrestrial quadrupeds (gorillas and chimpanzees). The paleontological record documents frequent climbing as an ancestral catarrhine ability, while a reassessment of the morphology of the torso and forelimb in living apes and Atelini suggests that their shared unique morphological pattern is best explained by brachiation and forelimb suspensory positional behavior. Further, evidence from the hand and foot points to a terrestrial quadrupedal phase in hominoid evolution prior to the adoption of bipedalism. The evolution of positional behavior from early hominoids to hominids appears to have begun with an arboreal quadrupedal-climbing phase and proceeded though an orthograde, brachiating, forelimb-suspensory phase, which was in turn followed by arboreal and terrestrial quadrupedal phases prior to the advent of hominid bipedality. The thesis that protohominids climbed down from the trees to become terrestrial bipeds needs to be reexamined in light of a potentially long history of terrestriality in the ancestral protohominid. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Gibbons are highly arboreal apes, and it is expected that their bipedal locomotion will show some particularities related to the arboreal environment. Previous research has shown that, during hylobatid bipedalism, unsupported phases are rare and stride frequencies are relatively low. This study confirms previous findings, and we suggest that low stride frequencies and the absence of unsupported phases are ways to reduce disadvantageous branch oscillations during arboreal travel. Despite these restrictions, gibbons are able to locomote at a wide range of speeds, implying that they likely exploit other mechanisms to modulate their locomotor speed. To investigate this possibility, we collected video images of a large number of spontaneous bipedal bouts of four untrained white-handed gibbons by using an instrumented walkway with four synchronized cameras. These video images were digitized to obtain a quantification of the 3D kinematics of hylobatid bipedalism. We defined a large number of spatiotemporal and kinematic gait variables, and the relationship between these gait variables and (dimensionless) speed was statistically tested. It was found that gibbons mainly increase stride length to increase their locomotor speed; the main speed-modulating mechanisms are hip and ankle excursion and coupled knee and ankle extension at toe-off. Although aerial phases are rare, gibbons generally adopt a bipedal bouncing gait at most speeds and a clear-cut gait transition, as seen in human locomotion, is absent. Comparison with human and bonobo bipedalism showed that the variability of the 3D joint angles of the hind limb are comparable during human and gibbon bipedalism, and much lower than during bonobo bipedalism. The low variability found in gibbons might be related to constraints imposed by the arboreal environment. These arboreal constraints clearly affect the bipedal gait characteristics of gibbons, but do not constrain the ability to adopt a bipedal bouncing gait during terrestrial locomotion.  相似文献   

6.
灵长类近节指趾骨的弯曲程度被认为是树栖性和悬垂位移行为的一个重要指标。几何形态测量学—多项式曲线拟合法(GM-PCF)提供了一种更加精准的指趾骨弯曲程度的定量化指标,以剔除指趾骨大小因素之后的标准化曲线高度(NPCH)作为其弯曲程度的指标,配合指趾骨的曲线长度,可以更加全面地定量分析灵长类指趾骨弯曲程度与位移行为的对应关系。尤其是涵盖灵长类大部分位移行为方式的15个类群、328个个体、5000余件指趾骨的参考样本,基本可以满足各种化石灵长类指趾骨弯曲程度分析和位移行为方式重建的需求。本文总结了发现有完整第II-V近节指趾骨化石材料的人猿超科成员的颅后骨骼形态适应及位移行为的重建,并运用GM-PCF对这些指趾骨化石的弯曲程度进行了对比分析,以通过指趾骨弯曲程度重建人猿超科成员的位移行为适应,并可为这些人猿超科成员位移行为的完整演化图景增加新的认识。  相似文献   

7.
8.
Mammalian bipedalism has long been thought to have arisen in response to arid and open environments. Here, we tested whether bipedalism coevolved with environmental changes using molecular and paleontological data from the rodent superfamily Dipodoidea and statistical methods for reconstructing ancestral characteristics and past climates. Our results show that the post‐Late Miocene aridification exerted selective pressures on tooth shape, but not on leg length of bipedal jerboas. Cheek tooth crown height has increased since the Late Miocene, but the hind limb/head‐body length ratios remained stable and high despite the environmental change from humid and forested to arid and open conditions, rather than increasing from low to high as predicted by the arid‐bipedalism hypothesis. The decoupling of locomotor and dental character evolution indicates that bipedalism evolved under selective pressure different from that of dental hypsodonty in jerboas. We reconstructed the habitats of early jerboas using floral and faunal data, and the results show that the environments in which bipedalism evolved were forested. Our results suggest that bipedalism evolved as an adaptation to humid woodlands or forests for vertical jumping. Running at high speeds is likely a by‐product of selection for jumping, which became advantageous in open environments later on.  相似文献   

9.
The energetic costs of load-carrying and the evolution of bipedalism   总被引:1,自引:0,他引:1  
The evolution of habitual bipedalism is still a fundamental yet unsolved question for paleoanthropologists, and carrying is popular as an explanation for both the early adoption of upright walking and as a positive selection pressure once a terrestrial lifestyle had been adopted. However, to support or reject any hypothesis that suggests carrying efficiency was an important selective pressure, we need quantitative data on the costs of different forms of carrying behavior, especially infant-carrying since reduction in the grasping capabilities of the foot would have prevented infants from clinging on for long durations. In this study, we tested the hypothesis that the mode of load carriage influences the energetic cost of locomotion. Oxygen consumption was measured in seven female participants walking at a constant speed while carrying four different 10-kg loads (a weighted vest, 5-kg dumbbells carried in each hand, a mannequin infant carried on one hip, and a 10-kg dumbbell carried in a single hand). Oxygen consumption was also measured during unloaded standing and unloaded walking. The results show that the weighted vest requires the least amount of energy of the four types of carrying and that, for this condition, humans are as efficient as mammals in general. The balanced load was carried with approximately the predicted energy cost. However, the asymmetrical conditions were considerably less efficient, indicating that, unless infant-carrying was the adaptive response to a strong environmental selection pressure, this behavior is unlikely to have been the precursor to the evolution of bipedalism.  相似文献   

10.
Bipedalism is a defining feature of the hominin lineage, but the nature and efficiency of early hominin walking remains the focus of much debate. Here, we investigate walking cost in early hominins using experimental data from humans and chimpanzees. We use gait and energetics data from humans, and from chimpanzees walking bipedally and quadrupedally, to test a new model linking locomotor anatomy and posture to walking cost. We then use this model to reconstruct locomotor cost for early, ape-like hominins and for the A.L. 288 Australopithecus afarensis specimen. Results of the model indicate that hind limb length, posture (effective mechanical advantage), and muscle fascicle length contribute nearly equally to differences in walking cost between humans and chimpanzees. Further, relatively small changes in these variables would decrease the cost of bipedalism in an early chimpanzee-like biped below that of quadrupedal apes. Estimates of walking cost in A.L. 288, over a range of hypothetical postures from crouched to fully extended, are below those of quadrupedal apes, but above those of modern humans. These results indicate that walking cost in early hominins was likely similar to or below that of their quadrupedal ape-like forebears, and that by the mid-Pliocene, hominin walking was less costly than that of other apes. This supports the hypothesis that locomotor energy economy was an important evolutionary pressure on hominin bipedalism.  相似文献   

11.
Human and chimpanzee locomotor behaviors are described and compared using field patterns derived from measurements of the motions at the joints. Field patterns of human and ape bipedalism are so different that it is doubted whether the nonhuman type could ever have been a precursor of the human type. Chimpanzee quadrupedal vertical climbing and human bipedalism are, on the other hand, similar and a particular variety of this kind of climbing probably was the precursor of human bipedalism. Animals adapted to this variation would have had some brachiation-like morphological traits in their pectoral limbs and some hominid-like morphological traits in their pelvic limbs, traits anticipating the human condition. The australopithecines possessed these traits and must have been adapted to arboreal quadrupedal vertical climbing, having the capacity, at the same time, to perform facultative terrestrial bipedalism, moving on the ground in a manner visually identical to that of humans.  相似文献   

12.
Sivapithecus is a Miocene great ape from South Asia that is orangutan-like cranially but is distinctive postcranially. Work by others shows that the humerus resembles large terrestrial cercopithecoids proximally and suspensory hominoids distally, but most functional interpretations nevertheless situate Sivapithecus in an arboreal setting. We present a new quantitative analysis of the Sivapithecus capitate and hamate. Though the functional morphology of both bones suggests some degree of arboreality, the overall morphology is most similar to knuckle-walking African apes. Other features of the Sivapithecus humerus and hind limb are also functionally consistent with knuckle-walking, and we suggest that this locomotor behavior is a valid alternative functional interpretation of the postcranial morphology. We speculate that knuckle-walking in Sivapithecus would have evolved independently from African apes, perhaps for similar ecological reasons. The discovery of a possible pongine knuckle-walker challenges the hypotheses that (1) knuckle-walking evolved only once in hominoids and (2) knuckle-walking is too highly specialized to be the positional behavior from which human bipedalism evolved. The possibility of knuckle-walking in Sivapithecus may help to explain not only the curious combination of characters that typify the postcranium but also the unique postcranial morphology of extant Pongo. Furthermore, it may clarify the distribution of fossil pongines across many ecological zones in Eurasia in the Miocene and Pleistocene, as well as, independently, the spread of African apes across a diversity of environments in equatorial Africa.  相似文献   

13.
The stereotyped characterizations of quadrupedal foot postures were tested by examining the kinematics of the cercopithecine foot on arboreal and terrestrial supports. Strictly arboreal species were compared with semi-terrestrial species for Cercopithecus, Cercocebus, Lophocebus, and Papio, in semi-natural or experimental settings. Results indicate that the kinematics of the cercopithecine arboreal quadruped differ in degree from stereotypical expectations for an arboreal quadruped. The relatively extended, adducted limb movements of the cercopithecines and the emphasis on the central digit as the functional axis of the foot suggest convergence with terrestrial mammalian cursors, and differ from the platyrrhine or colobine arboreal quadruped. The characteristics of the quadrupedal terrestrial primate foot contrast with the very unique pattern seen in the hominid foot. These contrasts provide a new perspective from which to interpret the hominid adaptation, in which the functional axis has remained fixed between the first and second digits. This pattern differs from virtually all other terrestrial mammals. The influence of bipedalism on this functional pattern is examined.  相似文献   

14.
We investigated the energetic costs of quadrupedal and bipedal walking in two Japanese macaques. The subjects were engaged in traditional bipedal performance for years, and are extremely adept bipeds. The experiment was conducted in an airtight chamber with a gas analyzer. The subjects walked quadrupedally and bipedally at fixed velocities (<5 km/hr) on a treadmill in the chamber for 2.5-6 min. We estimated energy consumption from carbon dioxide (CO2) production. While walking bipedally, energetic expenditure increased by 30% relative to quadrupedalism in one subject, and by 20% in another younger subject. Energetic costs increased linearly with velocity in quadrupedalism and bipedalism, with bipedal/quadrupedal ratios remaining almost constant. Our experiments were relatively short in duration, and thus the observed locomotor costs may include presteady-state high values. However, there was no difference in experimental duration between bipedal and quadrupedal trials. Thus, the issue of steady state cannot cancel the difference in energetic costs. Furthermore, we observed that switching of locomotor mode (quadrupedalism to bipedalism) during a session resulted in a significant increase of CO2 production. Taylor and Rowntree ([1973] Science 179:186-187) noted that the energetic costs for bipedal and quadrupedal walking were the same in chimpanzees and capuchin monkeys. Although the reason for this inconsistency is not clear, species-specific differences should be considered regarding bipedal locomotor energetics among nonhuman primates. Extra costs for bipedalism may not be great in these macaques. Indeed, it is known that suspensory locomotion in Ateles consumes 1.3-1.4 times as much energy relative to quadrupedal progression. This excess ratio surpasses the bipedal/quadrupedal energetic ratios in these macaques.  相似文献   

15.
A host of ecological, anatomical, and physiological selective pressures are hypothesized to have played a role in the evolution of hominid bipedalism. A referential model, based on the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), was used to test through experimental manipulation four hypotheses on the evolution of hominid bipedalism. The introduction of food piles (Carry hypothesis) increased locomotor bipedality in both species. Neither the introduction of branches (Display hypothesis) nor the construction of visual barriers (Vigilance hypothesis) altered bipedality in either species. Introduction of raised foraging structures (Forage hypothesis) increased postural bipedality in chimpanzees. These experimental manipulations provided support for carrying of portable objects and foraging on elevated food-items as plausible mechanisms that shaped bipedalism in hominids.  相似文献   

16.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four‐legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism and quadrupedalism over a range of speeds and gaits to investigate the effect of differential limb number on locomotor performance. Our results indicate that capuchin monkeys use a “grounded run” during bipedalism (0.83–1.43 ms?1) and primarily ambling and galloping gaits during quadrupedalism (0.91–6.0 ms?1). CoM energy recoveries are quite low during bipedalism (2–17%), and in general higher during quadrupedalism (4–72%). Consistent with this, hind limb vertical GRFs as well as CoM work, power, and collisional losses are higher in bipedalism than quadrupedalism. The positive CoM work is 2.04 ± 0.40 Jkg?1 m?1 (bipedalism) and 0.70 ± 0.29 Jkg?1 m?1 (quadrupedalism), which is within the range of published values for two and four‐legged terrestrial animals. The results of this study confirm that facultative bipedalism in capuchins and other nonhuman primates need not be restricted to a pendulum‐like walking gait, but rather can include running, albeit without an aerial phase. Based on these results and similar studies of other facultative bipeds, we suggest that important transitions in the evolution of hominin locomotor performance were the emergences of an obligate, pendulum‐like walking gait and a bouncy running gait that included a whole‐body aerial phase. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced tool use in a supported bipedal posture, an unsupported bipedal posture, and a seated posture. Neither bipedal tool use nor these supported conditions have been previously evaluated in apes. The hypotheses tested were 1) bipedal posture will increase the strength of hand preference, and 2) a bipedal stance, without the use of one hand for support, will elicit a right hand preference. Results supported the first, but not the second hypothesis: bipedalism induced the subjects to become more lateralized, but not in any particular direction. Instead, it appears that subtle pre-existing lateral biases, to either the right or left, were emphasized with increasing postural demands. This result has interesting implications for theories of the evolution of tool use and bipedalism, as the combination of bipedalism and tool use may have helped drive extreme lateralization in modern humans, but cannot alone account for the preponderance of right-handedness.  相似文献   

18.
The hypothesis is advanced that the habitual adoption of the bipedal stance and of bipedal locomotion in the hominids arose from the development of a defence mechanism, namely, the throwing of stones. It is argued that for stone-throwing to become an effective weapon, modifications to the whole post-cranial skeleton and musculature, as well as to the central nervous system are required; including the development of a low centre of gravity and a «launching platform» of relatively high mass. It is represented that hominids, from the earliest Australopithecines to modern man, exhibit modifications to the post-cranial structures that are more consonant with this hypothesis than with the interpretation that the modifications were directed initially and principally towards bipedalism. Such an interpretation is shown to create several anomalies which disappear when viewed in the context of the stated hypothesis. The importance of the hypothesis for the evolution of Homo and especially for his brain and higher thought processes is commented upon.  相似文献   

19.
The term ‘obstetrical dilemma’ was coined by Washburn in 1960 to describe the trade-off between selection for a larger birth canal, permitting successful passage of a big-brained human neonate, and the smaller pelvic dimensions required for bipedal locomotion. His suggested solution to these antagonistic pressures was to give birth prematurely, explaining the unusual degree of neurological and physical immaturity, or secondary altriciality, observed in human infants. This proposed trade-off has traditionally been offered as the predominant evolutionary explanation for why human childbirth is so challenging, and inherently risky, compared to that of other primates. This perceived difficulty is likely due to the tight fit of fetal to maternal pelvic dimensions along with the convoluted shape of the birth canal and a comparatively low degree of ligamentous flexibility. Although the ideas combined under the obstetrical dilemma hypothesis originated almost a century ago, they have received renewed attention and empirical scrutiny in the last decade, with some researchers advocating complete rejection of the hypothesis and its assumptions. However, the hypothesis is complex because it presently captures several, mutually non-exclusive ideas: (i) there is an evolutionary trade-off resulting from opposing selection pressures on the pelvis; (ii) selection favouring a narrow pelvis specifically derives from bipedalism; (iii) human neonates are secondarily altricial because they are born relatively immature to ensure that they fit through the maternal bony pelvis; (iv) as a corollary to the asymmetric selection pressure for a spacious birth canal in females, humans evolved pronounced sexual dimorphism of pelvic shape. Recently, the hypothesis has been challenged on both empirical and theoretical grounds. Here, we appraise the original ideas captured under the ‘obstetrical dilemma’ and their subsequent evolution. We also evaluate complementary and alternative explanations for a tight fetopelvic fit and obstructed labour, including ecological factors related to nutrition and thermoregulation, constraints imposed by the stability of the pelvic floor or by maternal and fetal metabolism, the energetics of bipedalism, and variability in pelvic shape. This reveals that human childbirth is affected by a complex combination of evolutionary, ecological, and biocultural factors, which variably constrain maternal pelvic form and fetal growth. Our review demonstrates that it is unwarranted to reject the obstetrical dilemma hypothesis entirely because several of its fundamental assumptions have not been successfully discounted despite claims to the contrary. As such, the obstetrical dilemma remains a tenable hypothesis that can be used productively to guide evolutionary research.  相似文献   

20.
The locomotor anatomy of Australopithecus afarensis   总被引:6,自引:0,他引:6  
The postcranial skeleton of Australopithecus afarensis from the Hadar Formation, Ethiopia, and the footprints from the Laetoli Beds of northern Tanzania, are analyzed with the goal of determining (1) the extent to which this ancient hominid practiced forms of locomotion other than terrestrial bipedality, and (2) whether or not the terrestrial bipedalism of A. afarensis was notably different from that of modern humans. It is demonstrated that A. afarensis possessed anatomic characteristics that indicate a significant adaptation for movement in the trees. Other structural features point to a mode of terrestrial bipedality that involved less extension at the hip and knee than occurs in modern humans, and only limited transfer of weight onto the medial part of the ball of the foot, but such conclusions remain more tentative than that asserting substantive arboreality. A comparison of the specimens representing smaller individuals, presumably female, to those of larger individuals, presumably male, suggests sexual differences in locomotor behavior linked to marked size dimorphism. The males were probably less arboreal and engaged more frequently in terrestrial bipedalism. In our opinion, A. afarensis from Hadar is very close to what can be called a "missing link." We speculate that earlier representatives of the A. afarensis lineage will present not a combination of arboreal and bipedal traits, but rather the anatomy of a generalized ape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号