首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of healthy wheat seeds (Triticum aestivum var Sonalika) to mild dose of cadmium (Cd(2+)) given as 50 microM CdCl(2) for 48 h and then washed off Cd(2+) offered resistance to the subsequent infection by Fusarium oxysporum inoculum. Seven days old seedlings having two primary leaves were aseptically inoculated with fungus, F. oxysporum (1 x 10(6)) spores. The seedlings pre-exposed to low level of Cd(2+) survived the Fusarium infection, while plantlets without Cd(2+) stress wilted and then perished due to Fusarium infection. The stress associated proteins induced by Cd(2+) (50 microM), F. oxysporum and by the co-stress (50 microM Cd(2+) and then with F. oxysporum) treatments were observed to be of same molecular weight (51 kDa). Antibody was raised against the purified Cd(2+)-stress associated protein (CSAP). Immuno-gold labeling of wheat seedling root tissue showed the presence of this CSAP in Cd(2+) pre-exposed and in co-stressed tissues and to be located predominantly on the inner linings of the cell membranes. We also observed that the anti-CSAP-antibody also labeled the root tissue of only Fusarium inoculated seedlings and the gold labeling was intensely located on the membrane. This cross-reaction of anti-CSAP suggests that Fusarium-induced stress protein (FISP) possibly has close homology to CSAP. We thus show for the first time the over expression of a high molecular mass protein by mild dose of Cd(2+) pre-exposure to wheat seeds which subsequently provided protection against Fusarium infection. This mode of resistance developed by an abiotic stress-causing agent against pathogen infection is novel.  相似文献   

2.
Trichoderma viride (Pers.) pre-inoculated wheat seedlings infected with Fusarium oxysporum Schlecht. (co-stressed) did not show wilting symptoms compared to Fusarium infected seedlings. Antagonistic activity of T. viride could be demonstrated against Fusarium infection by dual culture experiment. After seven days post infection, morphological and physiological parameters such as, root and shoot length, fresh and dry weight, relative water content, total soluble protein, total chlorophyll and carotenoid contents were observed to be increased in co-stressed compared to Fusarium infected seedlings. Accumulation of hydrogen peroxide was enhanced in Fusarium infected tissues compared to co-stressed. Trichoderma mediated activation of antioxidant enzymes such as, catalase, guaiacol peroxidase, ascorbate peroxidase, superoxide dismutase in co-stressed seedlings indicated their involvement in enhanced resistance against Fusarium infection, which is suggestive of playing crucial role in mitigating cellular toxicity developed due to excess H2O2. Thus, Trichoderma pre-inoculation protected wheat against Fusarium infection by stabilising oxidative stress.  相似文献   

3.
以当年生红砂(Reaumuria soongorica)幼苗为材料,采用盆栽实验,考察叶面喷施不同浓度(0、0.01、0.10、0.25、0.50、1.00 mmol·L-1)NO供体硝普钠 (SNP) 对NaCl(300 mmol·L-1)胁迫下红砂根、叶中可溶性蛋白、游离氨基酸和硝态氮含量,以及谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、硝酸还原酶(NR)活性的影响,并采用主成分分析和隶属函数法筛选NO对NaCl胁迫缓解效应的氮代谢指标和最佳NO浓度,以探讨外源NO对NaCl 胁迫下红砂缓解效应的氮代谢响应机制。结果表明:(1)在300 mmol·L-1 NaCl胁迫处理下,红砂幼苗根、叶中可溶性蛋白、硝态氮含量以及GS、GOGAT、NR活性均比对照显著下降。(2)外源NO能显著提高盐胁迫下红砂叶、根中GS、GOGAT、NR活性和硝态氮含量,增加根中可溶性蛋白和游离氨基酸含量。(3)NR和GOGAT活性可用于评价NO对NaCl胁迫下红砂幼苗的缓解作用,外源NO(SNP)对红砂幼苗在NaCl胁迫下的缓解效果强弱表现为0.25 mmol·L-1> 0.50 mmol·L-1> 0.10 mmol·L-1> 1.00 mmol·L-1> 0.01 mmol·L-1。研究发现,300 mmol·L-1 NaCl胁迫显著抑制了红砂幼苗氮代谢,外源NO(SNP)有助于提高盐胁迫下红砂NR活性,加快硝态氮转化为铵态氮,促进红砂叶片和根中GS/GOGAT对转化物的同化,从而增强红砂幼苗的耐盐性,并以0.25 mmol·L-1SNP处理时缓解作用最佳;NR和GOGAT活性可作为NO缓解盐胁迫的评价指标。  相似文献   

4.
Sharma P  Dubey RS 《Plant cell reports》2007,26(11):2027-2038
When seedlings of rice (Oryza sativa L.) cultivar Pant-12 were raised in sand cultures containing 80 and 160 μM Al3+ in the medium for 5–20 days, a regular increase in Al3+ uptake with a concomitant decrease in the length of roots as well as shoots was observed. Al3+ treatment of 160 μM resulted in increased generation of superoxide anion (O2 ) and hydrogen peroxide (H2O2), elevated amount of malondialdehyde, soluble protein and oxidized glutathione and decline in the concentrations of thiols (-SH) and ascorbic acid. Among antioxidative enzymes, activities of superoxide dismutase (SOD EC 1.15.1.1), guaiacol peroxidase (Guaiacol POX EC 1.11.1.7), ascorbate peroxidase (APX EC 1.11.1.11), monodehydroascorbate reductase (MDHAR EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (EC 1.6.4.2) increased significantly, whereas the activities of catalase (EC EC 1.11.1.6) and chloroplastic APX declined in 160 μM Al3+ stressed seedlings as compared to control seedlings. The results suggest that Al3+ toxicity is associated with induction of oxidative stress in rice plants and among antioxidative enzymes SOD, Guaiacol POX and cytosolic APX appear to serve as important components of an antioxidative defense mechanism under Al3+ toxicity. PAGE analysis confirmed the increased activity as well as appearance of new isoenzymes of APX in Al3+ stressed seedlings. Immunoblot analysis revealed that changes in the activities of APX are due to changes in the amounts of enzyme protein. Similar findings were obtained when the experiments were repeated using another popular rice cv. Malviya-36.  相似文献   

5.
Rewatering after drought is beneficial to plants subjected to moderate drought stress, and selenium (Se) could increase the tolerance of plants to stressful environment. The role of Se in rewatering of drought-treated wheat seedlings (Triticum aestivum L., cv Hengmai5229) was studied. The objective was to elucidate whether Se could improve recovery of wheat seedlings at rewatering after drought stress. Drought stress induced a significant reduction in growth parameters, total chlorophyll and soluble protein contents, and increased the rate of superoxide radical (O 2 ·? ) production, MDA content, and the activities of peroxidase, catalase (CAT), and superoxide dismutase in wheat seedlings. Rewatering after drought did not significantly affect biomass accumulation of seedlings over drought treatment, although it decreased the rate of O 2 ·? production and MDA content. However, the combined treatment of rewatering and Se evidently promoted biomass accumulation of seedlings over drought treatment and rewatering alone; and the rate of O 2 ·? production, MDA content, soluble protein content and CAT activity were recovered to the control values. This indicates that Se improved recovery of wheat seedlings at rewatering after drought stress.  相似文献   

6.
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil.  相似文献   

7.
ABSTRACT

Peach (Prunus persica L.) seedlings were germinated and grown for two growing seasons either in open top chambers (OTC) with ambient (350 μmol mol-1) or elevated (700 μmol mol-1) [CO2], or in an outside control plot, all located inside a glasshouse. The seedlings were grown in 10 dm3 pots and were fertilised once a week following Ingestad principles in order to supply mineral nutrients at free access rates. In the second growing season, rapid onset of water stress was imposed on rapidly growing peach seedlings by withholding water for a four-week drying cycle. In elevated [CO2], seedlings had a total dry mass which was 33% higher than that in ambient [CO2]. This increase was largely a consequence of increased height growth. [CO2] and irrigation treatments had only small effects on allocation, and there was no increase in root allocation with low water availability possibly as consequence of the high-nutrient regime. Specific leaf area was significantly reduced in elevated [CO2], and probably resulted from increases in starch concentrations. Stomatal conductance (g s) was not affected by elevated [CO2] both in well-watered and water-stressed seedlings. The combination of increased assimilation rate (A) and unchanged g s led to large increases in intrinsic water use efficiency in response to elevated [CO2]. The A/C i curves were used to derive the parameters describing photosynthetic capacity, Amax, Jmax and Vcmax . These parameters were similar among [CO2] treatments; thus, there was no downward acclimation of photosynthesis in elevated [CO2]. Moreover, Amax, Jmax and Vcmax scaled linearly with leaf N content per unit leaf area. This indicates that the whole-plant source-sink balance of peach seedlings was not disrupted by growth in elevated [CO2], because root volume and nutrient supply were non-restricting. These values may be used in scaling up models to improve their ability to predict the magnitude of tree responses to climate change in the Mediterranean area.  相似文献   

8.
Cd~(2+)胁迫对小桐子幼苗叶片抗氧化系统的影响   总被引:1,自引:0,他引:1  
以小桐子幼苗为材料,设置不同浓度CdCl_2处理,测定Cd~(2+)胁迫对小桐子幼苗叶片中可溶性蛋白、丙二醛(MDA)含量,以及5种抗氧化酶活性和2种抗氧化剂含量的变化,探讨镉胁迫对小桐子幼苗抗氧化系统的影响。结果表明:(1)Cd~(2+)胁迫导致小桐子幼苗叶片中可溶性蛋白含量降低、MDA含量增加;(2)随着镉胁迫时间的延长,幼苗叶片中愈创木酚过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸专一性过氧化酶(APX)、谷胱甘肽还原酶(GR)等抗氧化酶活性表现出先升高然后降低的变化趋势;(3)幼苗叶片中还原型抗坏血酸(ASA)和还原型谷胱甘肽(GSH)含量随着胁迫时间延长而降低,但其中氧化型抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量则升高。研究表明,镉胁迫初期能诱导小桐子幼苗抗氧化系统活性显著增强,提高其抗氧化能力,但随着胁迫时间的延长,致使其抗氧化酶的活性和抗氧物质含量下降,植株遭受明显氧化胁迫,幼苗生长受到镉的严重毒害。  相似文献   

9.
Physiological and biochemical responses of wheat seedlings to drought, UV-B radiation, and combined stress were investigated. Drought, UV-B, and combined stresses retarded seedling growth by 26.5, 29.1, and 55.9%, respectively. One reason for growth retardation may be the oxidative damage indicated by an increase in the H2O2 content and lipid peroxidation degree. Furthermore, there was negative correlation between shoot fresh weight and H2O2 content, fresh weight and the content of thiobarbituric acid-reacting substances (TBARS), and the positive correlation between H2O2 content and TBARS (R 2 = 0.9251, 0.9005, and 0.9007, respectively). The activities of superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase increased under drought, UV-B, and the combination of stresses, while catalase activity decreased under the combined stress as compared to the control. The combination of drought and UV-B caused more severe damage to wheat seedlings than stress factors applied separately. Thus, the combined application of drought and UV-B had more strong adverse effects on wheat seedlings. The addition of 0.2 mM sodium nitroprusside (SNP) enhanced wheat seedling growth under drought, UV-B, and combined stress, likely, due to decreasing the accumulation of H2O2 and lipid peroxidation as well as activating the antioxidant enzymes. However, SNP treatment decreased the proline content. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 5, pp. 763–769. The text was submitted by the authors in English.  相似文献   

10.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

11.
四翅滨藜生理生化特征对盐胁迫的响应   总被引:1,自引:0,他引:1  
采用温室盆栽试验研究四翅滨藜(Atriplex canescens)幼苗株高、地径、生物量、净光合速率、蒸腾速率、气孔导度、叶绿素含量、抗氧化酶活性及丙二醛含量对不同浓度NaCl和Na_2SO_4(0、100、200、300和400mmol·L~(-1))胁迫的响应,以探讨四翅滨藜对不同种类及不同浓度盐渍环境的适应机制及其耐盐机理。结果显示:(1)随着盐分浓度的升高,四翅滨藜幼苗的株高、地径及生物量增量呈现出先升高后降低的趋势,低盐浓度下2种盐均促进幼苗生长,盐浓度超过400mmol·L~(-1)时,NaCl对幼苗生长具有明显抑制作用。(2)2种盐处理下,四翅滨藜幼苗净光合速率(Pn)和叶绿素含量(Chl)随盐浓度增大而升高,即2种盐均对幼苗Pn和Chl含量具有促进作用,且Na_2SO_4的促进效果大于NaCl;而幼苗蒸腾速率(Tr)和气孔导度(Gs)随盐浓度升高呈先增大后减小的趋势,且Na_2SO_4的促进作用强于NaCl。(3)与对照相比,四翅滨藜幼苗的丙二醛、SOD、POD酶活性在NaCl和Na_2SO_42种盐处理下,随着盐浓度的升高均呈现出不同程度的增大,且增大幅度总体表现为NaClNa_2SO_4。研究表明,四翅滨藜在NaCl和Na_2SO_4胁迫下,叶绿素的分解速率以及发挥作用的渗透调节物质均有差异,使得幼苗叶片健康程度不同,导致叶片光合能力大小的差异,最终表现为植株的生长差异;四翅滨藜具有较强的耐盐能力,而且对Na_2SO_4的适应能力强于NaCl。  相似文献   

12.
Seedlings of O. violaceus were cultured on MS media and treated at low temperature. Cold treatment at 5–7 °C for more than 7 days was needed for flower induction of seedlings in vitro originated from germinated seeds. When cultured on MS media supplemented with 2.5 mg l−1 zeatin and 2 mg l−1 gibberellin (GA3), seedlings in vitro did initiate flowers without cold treatment. When MS media was used with a reduced amount of NH4NO3, flower induction of seedlings in vitro could be accelerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The paper reports the effects of selenium (Se) supply on growth and antioxidant traits of wheat (Triticum aestivum L. cv Han NO.7086) seedlings exposed to enhanced ultraviolet-B (UV-B) stress. Antioxidant responses of seedlings were different depending on the Se concentration. Compared with the control, the lower amount used (0.5 mg Se kg−1 soil) had no significant effect on biomass accumulation. The treatments with 1.0, 2.0, and 3.0 mg Se kg−1 promoted biomass accumulation of wheat seedlings, and the increased amount in biomass was the most at 1.0 mg Se kg−1 treatment. Se treatments with 1.0, 2.0, and 3.0 mg kg−1 also significantly increased activities of peroxidase (POD) and superoxide dismutase (SOD) and reduced the rate of superoxide radical (O2) production and malondialdehyde (MDA) content of wheat seedlings. In addition, anthocyanins and phenolic compounds content in wheat seedlings evidently increased by the treatments with 1.0 and 2.0 mg Se kg−1. The lower Se treatment had no significant effect on MDA content, although it increased activities of antioxidant enzymes (POD, SOD, and catalase activities) and reduced the rate of O2 production in wheat seedlings. These results suggest that optimal Se supply is favorable for the growth of wheat seedlings and that optimal Se supply can reduce oxidative stress of seedlings under enhanced UV-B radiation.  相似文献   

14.
Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.  相似文献   

15.
Changes in various components of photosynthetic apparatus during the 4 d dark incubation at 25°C of detached control and ultraviolet-B (UV-B) treatedVigna unguiculata L. leaves were examined. The photosynthetic apparatus was more degraded in younger control seedlings and for a longer time UV-B treated seedlings than in the older or for a shorter time UV-B treated seedlings. This was shown by determining the losses in chlorophyll (Chl) and protein contents, variable fluorescence yield, photosystem (PS) 2, PS1 and ribulose-1,5-bisphosphate carboxylase (RuBPC) activities, and photosynthetic14CO2 fixation. In contrast, the Car/Chl ratio increased during the dark incubation due to less expressed degradation of Car.  相似文献   

16.
The effect of calcium (Ca2+) on Trifolium repens L. seedlings subjected to cadmium (Cd2+) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd2+ concentrations of 0, 400 and 600 μM, and on corresponding medium supplied with CaCl2 (5 mM). Exposure to increasing Cd2+ reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H2O2 level and lipid peroxidation increased. In the upper part, Cd2+ exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd2+ stress. Ca2+ addition to medium reduced the Cd2+ accumulation, and considerably reversed the Cd2+-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca2+ application diminished the Cd2+ effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca2+ in Cd2+ stress were considered to reduce Cd2+ accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.  相似文献   

17.
Rice (Oryza sativa L.) seedlings stressed with CdCl2 (0.5 mM or 50 μM) showed typical Cd toxicity (leaf chlorosis, decrease in chlorophyll content, or increase in H2O2 and malondialdehyde contents). Rice seedlings pretreated with heat shock at 45°C (HS) for 2 or 3 h were protected against subsequent Cd stress. Rice seedlings pretreated with HS had similar Cd concentration in leaves caused by CdCl2 as those non-HS. The content of H2O2 increased in leaves 1 h after HS exposure. However, APX and GR activities were higher in HS-treated leaves than their respective control, and it occurred after 2 h of HS treatment. Pretreatment of rice seedlings with H2O2 under non-HS conditions resulted in an increase in APX, GR, and CAT activities and protected rice seedlings from subsequent Cd stress. HS-induced H2O2 production and protection against subsequent Cd stress can be counteracted by imidazole, an inhibitor of NADPH oxidase complex. Results of the present study suggest that early accumulation of H2O2 during HS signals the increase in APX and GR activities, which in turn prevents rice seedlings from Cd-caused oxidative damage.  相似文献   

18.
Protective effect of exogenous wheat germ agglutinin (WGA) on wheat seedling (Triticum aestivum L.) during salinity stress was studied. In particular, we examined the state of pro- and antioxidant systems as well as the level of peroxide oxidation of lipids and electrolyte leakage under control conditions and when stressed with NaCl. Generation of superoxide anions and activity of both superoxide dismutase (SOD) and peroxidase increased during saline stress. Accumulation of O2 ·− resulted in peroxide oxidation of lipids and electrolyte leakage in response to stress. The injurious effect of salinity on root growth of seedlings was manifested by a decreased mitotic index (MI) in apical root meristem. This study show that WGA pretreatment decreased salt-induced superoxide anion generation, SOD and peroxidase activities, levels of lipid peroxidation and electrolytes leakage as well as correlating with a reduction in the inhibition of root apical meristem mitotic activity in salt-treated plants. This suggests that exogenous WGA reduced the detrimental effects of salinity-induced oxidative stress in wheat seedlings. Thus WGA effects on a balance of reactive oxygen species (ROS) and activities of antioxidant enzymes may provide an important contribution to a range of the defense reactions induced by this lectin in wheat plants.  相似文献   

19.
The activity of 1-aminocyclopropane-1-carboxylic acid synthase (ACC synthase, ACS) and the concentrations of superoxide radical (O2−.) and hydrogen peroxide (H2O2) were measured in etiolated mungbean seedlings following their transfer to a growth chamber at 25°C after a 5-h-chilling treatment at 5°C. All of these variables increased dramatically after the transfer, and strong correlations were found between ACS activity and the concentrations of superoxide and H2O2. Exogenous applications of two generators of superoxide radicals, methylviologen (MV) and xanthine–xanthine oxidase (X–XOD), enhanced ACS activity in seedlings, but their effects were inhibited by exogenous applications of specific scavengers of O2−.. However, applications of H2O2 or specific H2O2-scavengers had no significant effects on seedlings ACS activity. The results indicate that O2−. was involved in the chilling-induced increases in ACS activity, but not H2O2. ACS activity peaked ca. 8 h after the transfer, and then declined, but the decline could be counteracted by exogenous applications of specific O2−. scavengers, this suggests that damage was caused by superoxide radicals influencing ACS activity in etiolated mungbean seedlings. Further analysis of changes in two key kinetic parameters of ACS activity—V max (maximum velocity) and K m (the Michaelis constant)—in the seedlings indicated that the presence of O2−. may reduce K m, i.e. increase substrate (S-adenosyl methionine, SAM) affinity. That would be the main mechanism responsible for the observed chilling-induced increases in ACS activity in etiolated mungbean seedlings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号