首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Clonal cell line NCB-20 (a hybrid of mouse neuroblastoma N18TG2 and Chinese hamster 18-day embryonic brain expiant) expressed both high- (KD 180 nM) and low-affinity (>3000 nM) binding sites for [3H]serotonin (5-HT) which were absent from the parent neuroblastoma. The low-affinity binding site was eliminated by 1 μM spiperone. The order of drug potency for inhibition of high-affinity [3H]5-HT binding was consistent with a 5-HT1 receptor (5,6 - dihydroxytryptamine = 5-HT = methysergide = 5-methoxytryptamine > cyproheptadine = clozapine = mianserin > spiperone > dopamine = morphine = ketanserin = norepinephrine). [3H]5-HT binding was inhibited by guanine nucleotides (e.g., GTP and Gpp(NH)p), whereas antagonist binding was not; as-corbate was also inhibitory. A 30-min exposure of cells to 1—2 μM 5-HT or other agonists produced a three- to fivefold stimulation of cyclic AMP levels. The order of potency for 5-HT agonist stimulation of basal cyclic AMP levels and 5-HT antagonist reversal of agonist-stimulated levels was the same as the order of drug potency for inhibition of high-affinity [3H]5-HT binding, suggesting linkage of the 5-HT1 receptor to adenylate cyclase in NCB-20 cells.  相似文献   

2.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

3.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

4.
Abstract: Serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A and 5-HT2C receptors belong to the class of phosphoinositide-specific phospholipase C (PLC)-linked receptors. Conditions were established for measuring 5-HT2A-linked and 5-HT2C-linked PLC activity in membranes prepared from previously frozen rat frontal cortex and caudate. In the presence of Ca2+ (300 nM) and GTPγS (1 µM), 5-HT increased PLC activity in caudate membranes. Pharmacological analysis using the selective 5-HT2A antagonist, spiperone, and the nonselective 5-HT2A/2C antagonist, mianserin, demonstrated that over half of the 5-HT-stimulated PLC activity was due to stimulation of 5-HT2C receptors as opposed to 5-HT2A receptors. Radioligand binding assays with [3H]RP 62203 and [3H]-mesulergine were used to quantify 5-HT2A and 5-HT2C sites, respectively, in caudate. From these data, the Bmax for caudate 5-HT2A sites and 5-HT2C sites was 165.4 ± 9.7 fmol/mg of protein and 49.7 ± 3.3 fmol/mg of protein, respectively. In contrast to that in caudate, PLC activity in frontal cortex was stimulated by 5-HT in a manner that was inhibited by the 5-HT2A-selective antagonists, spiperone and ketanserin. Taken together, the results indicate that 5-HT2A- and 5-HT2C-linked PLC activity can be discerned in brain regions possessing both receptor subtypes using membranes prepared from previously frozen tissue. More importantly, significant 5-HT2C-mediated phosphoinositide hydrolysis was observed in caudate, despite the relatively low density of 5-HT2C sites. The significance of these observations with respect to the physiological function of 5-HT2C receptors is discussed.  相似文献   

5.
《Life sciences》1987,41(13):1567-1576
[3H]Spiroxatrine was examined as a potential ligand for the labeling of 5-HT1A sites in the rat hippocampus. Analysis of the binding of [3H]spiroxatrine in the absence and presence of varying concentrations of three monoamine neurotransmitters revealed that serotonin (5-HT) had high affinity (IC50= 20.7 nM for the [3H]spiroxatrine binding sites, consistent with the labeling of 5-HT1 sites, while dopamine and norepinephrine had very low affinity (IC50=57600 nM and >10−4 M respectively). Saturation studies of the binding of [3H]spiroxatrine revealed a single population of sites with a Kd=2.21 nM. Further pharmacologic characterization with the 5-HT1A ligands 8-hydroxy-2-(di-n-propylamino) tetralin, ipsapirone, and WB4101 and the butyrophenone compounds spiperone and haloperidol gave results that were consistent with [3H]spiroxatrine labeling 5-HT1A sites. This ligand produced stable, reproducible binding with a good ratio of specific to nonspecific binding. The binding of [3H]spiroxatrine was sensitive to GTP, suggesting that this ligand may act as an agonist. This was supported by the finding that spiroxatrine inhibits forskolin-stimulated adenylate cyclase activity (a proposed 5-HT1A receptor model) in the rat hippocampus. Since [3H]spiroxatrine is structurally distinct from other currently available radioligands for the 5-HT1A site, it should provide new information about the properties of this putative serotonergic receptor.  相似文献   

6.
Abstract: Previous studies have demonstrated species-specific differences in 5-hydroxytryptamine3 (5-HT3) receptors, but unequivocal evidence of 5-HT3 receptor subtypes, within a species, has not yet been obtained. The purpose of the current study was to test for heterogeneity in 5-HT3 receptors in murine tissues. 5-HT3 receptors in membranes derived from brain cerebral cortex of CD-1, C57BI/6, and Swiss Webster mice and ileum of CD-1 mice were labeled with the 5-HT3 receptor antagonist [3H]RS-42358–197. Structurally diverse competing ligands were then used to characterize the binding site. [3H]RS-42358-197 bound with similar affinity in each of the cortical tissues (mean KD= 0.14 nM; range, 0.06–0.32 nM) but bound with lower affinity in ileal tissue (2.5 nM). The density of sites labeled with [3H]RS-42358–197 ranged from 10.4 fmol/mg of protein in Swiss Webster mouse cortex to 44.2 fmol/mg of protein in Sprague-Dawley rat cortex. Displacing ligands produced a pharmacologic profile of the [3H]RS-42358–197 binding site consistent with it being a 5-HT3 receptor: (R)-YM060 > (S)-zacopride > (R)-zaco-pride > MDL 72222 > 2-methyl-5-HT. However, 10-fold differences in the affinity of certain ligands were found when comparing 5-HT3 binding sites in membranes from cerebral cortex of the different strains of mice and when comparing 5-HT3 binding sites in brain and ileal membranes prepared from the CD-1 mouse strain. Ligands demonstrating selectivity included RS-42358–197, (R)-za-copride, 1-(m-chlorophenyl) biguanide, (R)-YM060, and MDL 72222. These studies demonstrate tissue-and strain-dependent differences in murine 5-HT3 binding sites. This suggests that 5-HT3 receptors exist as multiple subtypes within species and that subtype-selective 5-HT3 ligands may be identified.  相似文献   

7.
Abstract

The interaction of SCH 23390 with dopamine (DA) and serotonin (5-HT) systems has been examined in vivo and in vitro. Like selective 5-HT2 blockers, SCH 23390 inhibited in vivo [3H]spiperone binding in the rat frontal cortex (ID50: 1.5 mg/kg) without interacting at D2 sites. SCH 23390 was equipotent to cinanserin and methysergide. In vitro, SCH 23390 inhibited [3H]ketanserin binding to 5-HT2 sites (IC50 = 30 nM). Biochemical parameters linked to DA and 5-HT were not changed excepted in striatum where SCH 23390 increased HVA and DOPAC. In the L-5-HTP syndrome model, SCH 23390 clearly showed antagonism of 5-HT2 receptors. SCH 23390 had weak affinity for 5-HT1B (IC50 = 0.5 μM), 5-HT1A (IC50 = 2.6 μM) and α;1-adenergic receptors (IC50 = 4.4 μM).  相似文献   

8.
Saturable and specific binding sites for 5-[3H]hydroxytryptamine (5-HT, serotonin) characterized by a KD of 3.5-4.5 nM were detected in the chick embryo brain and were shown to develop linearly as a function of age, weight, and protein content. Saturation and displacement studies using unlabeled 5-HT as the displacing ligand suggested a single population of binding sites. However, displacement studies using 5-methoxytryptamine, lysergic acid diethylamide (LSD), 2-bromo-lysergic acid diethylamide (BOL), methysergide, and spiperone as competing ligands suggested the existence of subclasses of [3H]5-HT binding sites because the Hill coefficients were less than unity. When compared with the reported [3H]5-HT binding sites (5-HT1) in the rat forebrain, the IC50 values of the competing ligands were similar. However, the Hill coefficients for LSD and methysergide were less than unity which suggested that the [3H]5-HT binding sites in the chick embryo brain may be more similar to those found in rat spinal cord than rat forebrain. To study [3H]5-HT binding site regulation and development, various serotonergic compounds were injected into the chorioallantoic fluid of the eggs at different times during embryonic development. Multiple pretreatments with d,l-5-hydroxytryptophan, 5-HT, or BOL were found to have no significant effects on either the affinity (KD) or number (Bmax) of specific [3H]5-HT binding sites. Multiple pretreatments with p-chlorophenylalanine were found to increase the Bmax of specific [3H]5-HT binding by 23% (p less than 0.01) whereas multiple pretreatments with LSD were found to decrease the Bmax of specific binding by 45% (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

10.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

11.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

12.
The specific binding of [3H]5-hydroxytryptamine ([3H]5-HT, [3H]serotonin) to rat cerebral cortex is increased approximately 1.5 to 2.0 fold by cholesterol hydrogen succinate (CHS) and is solubilized into the supernatant fraction by 12 mM CHS. [3H]5-HT binding sites can be constituted by incubating the supernatant fraction obtained from CHS-treated cerebral cortex with cerebellum in which no significant [3H]5-HT binding is detectable. The constituted [3H]5-HT binding could be displaced by unlabeled 5-HT, d-lysergic acid diethylamide (d-LSD) and spiperone as could the binding to cortex membranes. Unlabeled 5-HT, d-LSD and spiperone each inhibited specific [3H]5-HT binding to constituted binding sites by 50% at about 1 X 10(-9) M. Specific [3H]spiperone binding was not detectable in the constituted membranes. Stearic acid which is reported to have similar effects on membrane fluidity as cholesterol also increased specific [3H]5-HT binding in cortical membranes. Stearic acid does not affect specific [3H]spiperone binding. These results suggest that [3H]5-HT and [3H]spiperone binding sites are affected differently by membrane fluidity.  相似文献   

13.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

14.
Abstract

Binding of [3H]spiperone was studied in membranes obtained from bovine neurohypophyses devoid of intermediate lobe tissue. Non-linear Scatchard plot suggested the presence of more than a single class of binding sites. Competition experiments using ketanserin, a ligand selective for 5-HT2 receptors, were carried out to ascertain whether serotonergic, in addition to dopaminergic receptors, might be responsible for the heterogeneity of [3H]spiperone binding. Computer-assisted modeling suggested the presence of two classes of binding sites for ketanserin (Ka = 1.6 ± 0.2 and 366.7 ± 20.5 nM, respectively). The Ka value for ketanserin binding to the high-affinity sites, as well as the Ka of [3H]spiperone for these sites suggested by the 2 sites model indicate that they represent serotonin 5-HT2 receptors. The [3H]spiperone Ka at the ketanserin low-affinity sites (65 ± 7 pM) and the rank order of inhibitory potencies for several antagonists show that the lowaffinity sites represent dopamine D-2 receptors.  相似文献   

15.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

16.
ABSTRACT

In Chinese Hamster Ovary (CHO) cells expressing cloned human 5-hydroxy-tryptamine1A (5-HT1A) receptors, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzopyran-5-carboxamide ([3H]NAD-299) exhibited high affinity (Kd = 0.16?nM) and labeled 34% more receptors than 8-hydroxy-2-([2,3-3H]di-n-propylamino)tetralin ([3H]8-OH-DPAT). NAD-299 behaved as a silent antagonist in [35S]GTPγS binding similar to N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide (WAY-100635) and (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)UH-301). 5-HT and 5-carboxamidotryptamine (5-CT) stimulated [35S]GTPγS binding 2.5-fold while spiperone and methiothepin inhibited [35S]GTPγS binding 1.4-fold. Furthermore, NAD-299 antagonised both the 5-HT stimulated and the spiperone inhibited [35S]GTPγS binding to basal levels. The KiL/KiH ratios for spiperone (0.66), methiothepin (0.39), WAY-100635 (0.32), (S)UH-301 (0.94), NAD-299 (1.29), NAN-190 (1.23), (S)pindolol (5.85), ipsapirone (13.1), buspirone (24.6), (±)8-OH-DPAT (47.3), flesinoxan (55.8), 5-HT (200) and 5-CT (389) correlated highly significantly with the intrinsic activity obtained with [35S] GTPγS (r = 0.97).  相似文献   

17.
Several factors are known to regulate ligand binding to 5-hydroxytryptamine (5-HT) receptors. In the present experiments we have investigated the mechanism by which bicarbonate ion modify central 5-HT receptor sensitivity in rats. Mn2+ (10−6–10−3M) increased specific [3H]5-HT binding to 5-HT1 receptor sites (+60–70%), this effect being further enhanced by the addition of HCO3 (+300–400%), while the binding of [3H]spiperone binding to 5-HT2 receptor sites was not affected by Mn2+ and HCO3. The effect of other divalent cations, Mg2+, Cu2+, Ca2+ and Fe2+, however, were not enhanced by the addition of HCO3. Scatchard analysis indicated that the effect of bicarbonate ion was associated with increase in the number of high affinity binding sites and appearance of low affinity binding sites. This effect of bicarbonate ion was characterized by decreased dissociation rate of the specific binding, was temperature-dependent, reduced by N-ethylmaleimide and iodoacetamide, and was completely inhibited by ascorbate, dithiothreitol and 2-mercaptoethanol. The effect was not influenced by GTP or GppNHp but it was significantly inhibited by ATP. Pretreatment of membranes with Triton X-100 (0.1%) increased the effect of bicarbonate ion. From these results, it is suggested that bicarbonate ion specifically interacts with Mn2+ and selectively increases [3H]5-HT binding.  相似文献   

18.
The invitro binding of [3H]serotonin ([3H]5-HT) to cerebral cortex from young and old adult humans was studied. With cortex from human males 23–29 years old, the binding of [3H]5-HT was a saturable process, and bound [3H]5-HT could be displaced by unlabeled 5-HT or by lysergic acid diethylamide (LSD). Two separate binding sites were discernible by Scatchard analysis. The dissociation constants were 7 nM (Kd1) and 52 nM (Kd2), and the total number of binding sites were 0.65 (n1) and 2.06 (n2) pmoles/mg protein, respectively. In cerebral cortex from aged humans (61–70 years old), the dissociation constant for [3H]5-HT binding was 198 nM, and the total number of binding sites were 4.78 pmoles/mg protein. The alteration of serotonin binding sites may be related to cerebral malfunction in old people, particularly to mental depression and sleep disturbances that commonly occur.  相似文献   

19.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   

20.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号