首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human factor VIII-related protein was isolated from cryoprecipitate by agarose (Sepharose CL-2B) gel filtration. Electrophoresis on SDS-2% polyacrylamide-0.5% agarose gels revealed size heterogeneity of factor VIII-related protein which was similar to that shown by SDS-1% agarose gel electrophoresis and electron microscopy. The apparent molecular weights were compared with those of crosslinked IgM oligomers and corresponded to values of up to 20 . 10(6) for factor VIII eluting close to the void volume of our gel filtration column. Measurement of mobility intervals on electrophoretic gels suggested a constant size difference between adjacent bands. Smaller aggregates were found in later eluates from Sepharose columns as well as following partial reduction of factor VIII with cysteine. In order to compare the size difference between small and large aggregates of factor VIII-related protein we calibrated the SDS-2% polyacrylamide-0.5% agarose gels with factor VIII which had been crosslinked with dimethyl suberimidate and subsequently disulfied-reduced with 2-metcaptoethanol. By combination of calibration ranges, constant intervals were measured for large and smaller factor VIII aggregates. The interval between any neighboring protein bands, which were immunologically identified as factor VIII-related protein, was equal to the dimer of the basic factor VIII subunit chain. We conclude that factor VIII aggregates correspond to multimers of a dimeric molecule, i.e. pairs of the basic subunit chain.  相似文献   

2.
Fractionation of individual, biologically active factor VIII multimers   总被引:2,自引:0,他引:2  
We have designed an electrophoretic system for the fractionation of individual, biologically active multimers of factor VIII. Human factor VIII, purified by gel filtration on Sepharose CL-2B from plasma cryoprecipitate, was submitted to electrophoresis without SDS on 2.0% polyacrylamide gels in 0.04 M Tris/0.06 M Tes buffer, pH 7.5. Staining with Coomassie blue revealed a series of protein bands. Measurement of electrophoretic mobility showed constant size intervals between adjacent bands. Electrophoresis in a second dimension, in the presence of SDS, resulted in an identical order of mobilities, suggesting that the different migration rates of factor VIII proteins in the first electrophoretic system were size- and not charge-dependent. After electrophoresis in the absence of SDS both factor VIII coagulant and ristocetin cofactor activities as well as factor VIII-related antigen were recovered by elution from gel slices. The distribution of activity peaks resembled that of Coomassie-stained factor VIII proteins found in control gels. We thus demonstrate that an electrophoretic fractionation of factor VIII multimers is possible even at neutral pH where factor VIII activities are retained.  相似文献   

3.
The structure of native and progressively reduced human factor VIII/von Willebrand factor (FVIII/vWF) was examined by electron microscopy and SDS gel electrophoresis and then correlated with its biological activities. Highly resolved electron micrographs of well-spaced, rotary- shadowed FVIII/vWF molecules showed their structure to consist of a very flexible filament that contains irregularly spaced small nodules. Filaments ranged from 50 to 1,150 nm with a mean length of 478 nm and lacked fixed, large globular domains as seen in fibrinogen and IgM. A population of multimeric FVIII/vWF species ranging in molecular weight from 1 to 5 million daltons and differing in size alternately by one and two subunits was observed on SDS-2% polyacrylamide-0.5% agarose gel electrophoresis. With progressive reduction of disulfide bonds by dithiothreitol (DTT), the electron microscopic size of FVIII/vWF decreased in parallel with increased electrophoretic mobility on SDS- agarose gels; between 0.1 and 0.5 mM DTT its structure changed from predominantly fibrillar species to large nodular forms. A 50% loss of vWF specific activity and FVIII procoagulant activity occurred at 0.4 mM DTT and 1 mM DTT, respectively, corresponding to the reduction of 4 and 12 disulfide bonds of the 62 disulfides per 200,000-dalton subunit. We conclude that reduction of a few critical disulfide bonds results in a major structural change by electron microscopy and a concomitant loss of approximately 50% of the vWF function.  相似文献   

4.
The sex steroid-binding protein (rSBP) of immature rabbit serum was purified to homogeneity by the sequential use of DEAE-cellulose chromatography, affinity chromatography on 5alpha-dihydrotestosterone-17 beta-succinyl-diaminoethyl-(1,4-butanediol diglycidyl ether)-agarose, agarose (Bio-Gel-A-0.5m) gel filtration, and preparative polyacrylamide gel electrophoresis. The cumulative yield is 13%. Homogeneity of rSBP was shown by the equilibrium sedimentation ultracentrifugation in 6 M guanidine HCl containing 0.1 M mercaptoethanol which yields an average molecular weight of 36,475 +/- 865. Analytical gel electrophoresis in the presence of sodium dodecyl sulfate and gel filtration on agarose yield a molecular weight of 57,000 and 120,000, respectively. The variation is due to a 30% carbohydrate content. The amino acid composition is reported. Comparison of the rabbit and human SBP indicate that they are different in both their molecular and functional properties.  相似文献   

5.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

6.
M Ugozzoli  A Chiu 《BioTechniques》1992,12(2):187-8, 190
Several components of the extracellular matrix in the molecular weight range of 220 kDa to 150 kDa were purified by preparative electrophoresis on 2.5% Pro-Sieve agarose gels. These high molecular weight glycoproteins, separated under reducing conditions, were recovered in solution by extraction of individual agarose gel slices and analyzed on sodium dodecyl sulfate polyacrylamide gels and Western blots. This simple method permitted the separation and recovery of the laminin B chains (220 kDa and 205 kDa) and entactin (150 kDa) and may prove useful for the purification of other high molecular weight species.  相似文献   

7.
Human factor VIII was purified from commercial factor VIII concentrate with a 12% yield. The specific coagulant activity of purified factor VIII was 8,000 units/mg. In the presence of SDS the purified factor VIII consisted of a variety of polypeptides on polyacrylamide gels, ranging between Mr 80,000 and Mr 208,000. In the absence of SDS the purified factor VIII showed an apparent molecular weight of 270,000 upon Sephadex G200 gel-filtration. The purified factor VIII could be activated by thrombin, which resulted in the disappearance of Mr 108,000-208,000 polypeptides in favor of an Mr 92,000 polypeptide. Treatment with factor Xa also activated factor VIII, whereas treatment with activated protein C resulted in the inactivation of coagulant activity. Coagulant-active 125I-factor VIII was prepared using a lactoperoxidase radioiodination procedure. This 125I-factor had the same characteristics as unlabeled factor VIII. All polypeptides could be precipitated with monoclonal antibodies directed against factor VIII. With 125I-factor VIII a pIapp of 5.7 was found in the presence of urea.  相似文献   

8.
Purification and characterization of bovine tissue factor   总被引:20,自引:0,他引:20  
Tissue factor (tissue thromboplastin, factor III), an initiator of coagulation, has been purified 142,000-fold to homogeneity from bovine brain. The protein is an integral membrane glycoprotein with an apparent molecular weight of 43,000 as judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The apoprotein was first purified by extraction with Triton X-100 and repeated preparative polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Antiserum was produced against a few micrograms of purified apoprotein and was used to construct an immunoadsorbent column. The column was then used for affinity purification of the apoprotein directly from the Triton X-100 extract, thereby significantly increasing the amount of purified protein produced. The purification scheme may be generally useful for the rapid and large scale purification of membrane proteins. Tryptic digestion of the apoprotein in Triton X-100 cleaved a peptide of approximately 3000 daltons without affecting the activity. The activity was recovered directly from stained SDS polyacrylamide gels, and the profile of recovered activity corresponded directly with the stained bands. The activity shifted along with the protein band following tryptic digestion, thus demonstrating that the protein observed on the gels is tissue factor. The coagulant activity of the purified apoprotein was reconstituted by the addition of phospholipid. Optimal activity was observed at phospholipid to protein ratios (w/w) greater than 450:1.  相似文献   

9.
Analytical isoelectric focusing (IEF) has been applied to the study of the apolipoprotein components of rat serum high density and very low density lipoproteins. The apolipoproteins were separated on 7.5% polyacrylamide gels containing 6.8% urea, with a pH gradient of 4-6. The middle molecular weight range apolipoproteins were identified on IEF gels by the use of apolipoproteins purified by electrophoresis on gels containing sodium dodecyl sulfate (SDS). The A-1 protein focused as 4 to 5 bands from pH 5.46 to 5.82; the A-IV protein and the arginine-rich protein each focused as 4 to 6 bands from pH 5.31 to 5.46. The low molecular weight proteins focused from pH. 4.43 to 4.83 and are the subject of a separate communication. Comparisons of the IEF method with SDS gel electrophoresis, polyacrylamide gel electrophoresis in urea, and Sephadex chromatography are also reported. Additional studies were also carried out that tend to rule out carbamylation or incomplete unfolding of the proteins in the presence of urea as the causes of the observed heterogeneity.  相似文献   

10.
Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor.   总被引:44,自引:0,他引:44  
Cold-insoluble globulin (CI globulin) was purified from human plasma and identified on the basis of its sedimentation coefficient, electrophoretic mobility, and concentration in normal plasma. CI globulin was distinguished from antihemophilic factor (AHF) by amino acid analysis, position of elution from 4% agarose, and electrophoretic migration in polyacrylamide gels in the presence of sodium dodecyl sulfate without prior reduction. CI globulin and AHF could not be distinguished by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction and probably have very similar subunit molecular weights. CI globulin apparently consists of two polypeptide chains, each of molecular weight 2.0 x 10(5), held together by disulfide bonds. CI globulin was a substrate for activated fibrin-stabilizing factor (FSF, blood coagulation factor XIII). FSF catalyzed the incorporation of a fluorescent primary amine, N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulfonamide, into CI globulin and also catalyzed the cross-linking of CI globulin into multimers, as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction. In the presence of fibrin, cross-linking of CI globulin by FSF occurred without the formation of CI globulin multimers. Instead, polypeptides with apparent molecular weights of 2.6 x 10(5) and 3.0 x 10(5) were seen. The formation of these polypeptides coincided with the loss of the alpha chain of fibrin and CI globulin. The polypeptides were not seen when fibrin alone was cross-linked. The formation of the polypeptides was greater in fine clots than in coarse clots, and greater in clots incubated at 0 degrees than in clots incubated at 37 degrees. In clots made from purified fibrinogen, CI globulin, and FSF, the concentration of CI globulin in the clot liquor was greater if either FSF or calcium ion was omitted and cross-linking did not take place. These observations suggest that CI globulin is enzymically cross-linked to one of the chains of fibrin, most likely the alpha chain, and is thus covalently incorporated into the fibrin clot. CI globulin is very similar to a protein in the plasma membrane of fibroblasts. The cross-linking of CI globulin to itself and to fibrin may typify reactions also involving the fibroblast membrane protein.  相似文献   

11.
Starting from homogenates of sheep liver, extensive co-purification of seven aminoacyl-tRNA synthetases to high specific activities was achieved by a three-step procedure involving fractional precipitation by poly(ethylene glycol) 6000, gel filtration on 6% agarose and chromatography on Sepharose-bound tRNA. The purified material is composed of nine major protein components as revealed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and has an apparent molecular weight of about 10(6) estimated by gel filtration on 6% agarose. It contains aminoacyl-tRNA synthetase activities specific for methionine, lysine, arginine, leucine, isoleucine, glutamine and glutamic acid. The rigorous co-elution of these seven enzymes at each chromatographic step suggests, but does not conclusively prove, that they are physically associated within the same complex. The enzyme composition of the high-molecular-weight complex purified from sheep liver is identical to that of the complex previously isolated from human placenta by Denney in 1977 (Arch. Biochem. Biophys. 183, 156--167).  相似文献   

12.
CSF-1 was isolated from a large volume of human normal urine (10,000 l), using the following 5 stages of purification: concentration by dialysis, silica gel adsorption, hydrophobic chromatography on phenyl-Sepharose CL-6B, fast protein liquid chromatography (FPLC) and finally preparative electrophoresis on polyacrylamide gels. We have isolated 8 mg of purified CSF-1 which migrated as a single band under non-reducing conditions in SDS-PAGE (staining with Coomassie Blue and the sensitive silver techniques). But in the presence of dithiothreitol, the SDS-PAGE pattern revealed a minor second band with a molecular mass of 50,000 Da. CSF-1 was purified 100,000-fold and has a specific activity of 2.16 X 10(7) units/mg protein. Its apparent molecular mass is 57,000 Da with an isoelectric point, pI = 5.8-6.0. The amino-acid composition is reported and compared with that of murine CSF-1. The carbohydrate content (sialic acid, sulphate groups, N-acetylglucosamine, N-acetylgalactosamine) was also determined, and it shows that CSF is a glycoprotein.  相似文献   

13.
Human plasma Factor II has been purified approximately 800-fold by a combination of barium citrate adsorption, ion-exchange chromatography and preparative polyacrylamide gel electrophoresis. The procedure is relatively simple and results in excellent yields of purified Factor II essentially free of Factor X activity. The purified factor behaved as a single component by analytical polyacrylamide gel disc electrophoresis at pH 8.9. No Factor V, VII or IX activity was detected in the purified Factor II. Its molecular weight was 7200±3000 as determined by analytical ultracentrifugation, electrophoresis in the presence of sodium dodecyl sulfate and gel filtration on Bio-Gel P-200. An apparent molecular weight of 90 000–100 000 was observed on calibrated columns of Sephadex G-100, G-150, and G-200. The specific activity of human factor II was approximately 1300 N.I.H. units/mg as determined by the two-stage assay and 7 Ortho units/mg by the one stage assay. The purified protein contained by weight 2.8% neutral hexose, 2.3% sialic acids and 3.1% hexosamines.  相似文献   

14.
Ribulose bisphosphate carboxylase (EC 4.1.1.39) has been purified to homogeneity from glutamate-CO2-thiosulfate-grown Thiobacillus intermedius by pelleting the protein from the 93,000 X g supernatant fluid followed by ammonium sulfate fractionation and sedimentation into a discontinuous sucrose density gradient. The molecular weight of the native protein approximated that of the higher plant enzyme (550,000) based on its relative electrophoretic mobility in polyacrylamide disc gels compared with that of standards of known molecular weight, including crystalline tobacco ribulose bisphosphate carboxylase. Sodium dodecyl sulfate electrophoresis in 12% polyacrylamide disc gels and Sephadex G-100 chromatography in the presence of sodium dodecyl sulfate indicated that the purified Thiobacillus protein, like the tobacco enzyme, consisted of two types of nonidentical subunits. The molecular weights of the large and small subunits were estimated to be about 55,000 and 13,000, respectively, by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carboxylase activity of the protein purified from spinach leaves and T. intermedius responded similarly to the effectors reduced nicotinamide adenine dinucleotide phosphate and 6-phosphogluconate. Contrary to a previous report (K. Purohit, B. A. McFadden, and A. L. Cohen, J. Bacteriol. 127:505-515, 1976), these results indicate that ribulose bisphosphate carboxylase purified from Thiobacillus intermedius closely resembles the higher plant enzyme with respect to quaternary structure, molecular weight, and regulatory properties.  相似文献   

15.
Purification of a skeletal growth factor from human bone   总被引:2,自引:0,他引:2  
J R Farley  D J Baylink 《Biochemistry》1982,21(14):3502-3507
A skeletal growth factor was isolated and purified from demineralized human bone matrix. A dose of 6 micrograms/mL of the purified factor significantly increased the proliferation rate of embryonic chick bone cells in serum-free culture (292% of controls, p less than 0.0001) but had no effect on embryonic chick skin cells plated at the same initial density. The factor is sensitive to inactivation by trypsin and urea, but not by collagenase, 20% butanol, or 1% mercaptoethanol. It is also resistant to inactivation by heat (stable for 15 min at 75 degrees C) and extremes of pH (stable for 30 min at 4 degrees C from pH 2.5 to 10.0). Purification of the active factor by selective heat and acid precipitations, molecular sieve column chromatography, and preparative polyacrylamide gel electrophoresis provided a material that was homogeneous by the criteria of high-pressure liquid chromatography, polyacrylamide gel electrophoresis, and isoelectric focusing. The apparent molecular weight is 83 000. The purified factor increases bone cell proliferation at doses comparable to other mitogens: 0.3 microgram/mL (3.6 nM) significantly increases DNA synthesis to 231% of controls (p less than 0.001). The purified factor was also active on cultured embryonic chick bones, enhancing the growth rate of tibiae and femurs, as measured by increased dry weight (185% of controls, p less than 0.025) and [3H]proline incorporation (164% of control, p less than 0.001), respectively.  相似文献   

16.
Factor VIII antigen from platelet intracellular granules was immunoprecipitated using a monospecific rabbit antibody to normal plasma factor VIII antigen. The factor VIII antigen in the immunoprecipitate was isolated on sodium dodecyl sulfate polyacrylamide gels, radiolabeled with 125I, trypsinized, and subjected to peptide mapping using two dimensional high voltage electrophoresis and thin layer chromatography. The platelet protein was compared to purified plasma factor VIII antigen. The two dimensional tryptic 125I peptide map of platelet granule factor VIII antigen was similar but not identical to the plasma factor VIII antigen peptide map. The platelet and plasma proteins shared approximately 34 radioactive peptide spots. Seven plasma factor VIII antigen peptides were not detected in platelet factor VIII antigen. The reason for the structural differences of plasma and platelet granule factor VIII antigen are unknown. The possibility is raised that proteolysis has altered the platelet protein in vitro. It is also possible that factor VIII antigen synthesized by megakaryocytes differs from the plasma protein.  相似文献   

17.
Eukaryotic initiation factor 5 (eIF-5), which specifically catalyzes the joining of a 60 S ribosomal subunit to a 40 S initiation complex to form a functional 80 S initiation complex, has been purified from ribosomal salt wash proteins of calf liver. The purified factor exhibits only one polypeptide band of Mr = 62,000 following electrophoresis in 10% polyacrylamide gels in the presence of sodium dodecyl sulfate. The native protein has a sedimentation coefficient of 4.2 S and a Stokes radius of 33 A which is consistent with eIF-5 being a monomeric protein of Mr = 58,000-62,000. Less pure preparations of eIF-5 elute in gel filtration columns with an apparent Mr of 160,000-180,000 presumably due to association of eIF-5 with other high molecular weight proteins since eIF-5 activity present in such preparations can also be shown by gel electrophoretic separation under denaturing conditions to be associated with a 62,000-dalton protein. Furthermore, eIF-5 purified from calf liver extracts with or without a number of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity of purified preparations. The purified factor catalyzes the hydrolysis of GTP present in 40 S initiation complexes in the absence of 60 S ribosomal subunits. The presence of 60 S ribosomal subunits neither stimulates nor inhibits the hydrolysis of GTP. However, the factor cannot mediate 40 S or 40 + 60 S ribosome-dependent hydrolysis of GTP in the absence of Met-tRNAf or other components required for 40 S initiation complex formation. It can be calculated that 1 pmol of eIF-5 protein can catalyze the formation of at least 10 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

18.
A procedure is described for the preparation of 1.32-10% polyacrylamide gradient gels. Loose polyacrylamide gel on the top side of the gradient was stabilized with a layer of 0.4% agarose gel which also formed sample wells. The upper limit of separation achieved in these gels was estimated to be approximately 2 X 10(6) using globular protein standards. However, large aggregating proteoglycans from cartilage which have a molecular weight range of 1-4 X 10(6) penetrate and separate in these gels. A simple one-step procedure is also described for simultaneous staining of proteins and large proteoglycans in polyacrylamide gels.  相似文献   

19.
Insulin-like growth factor I (IGF I)/somatomedin-C (SM-C) was purified from lyophilized human serum by acid-ethanol extraction. The extract was precipitated with acetone-ethanol. The precipitate was purified by Sephadex G-50 chromatography. The protein peak within a molecular weight range of 5000-10 000 was further purified with FPLC-reversed phase chromatography using a Pep RPC HR 5/5 column (Pharmacia) with a solvent system of acetonitrile (CH3CN) and 0.1% trifluoroacetic acid (TFA) in water. The purification of IGF I was monitored by radioimmunoassay for SM-C. Purity was established by analytical isoelectric focusing and by SDS polyacrylamide gel electrophoresis. Analytical isoelectric focusing showed one single protein band with an apparent pI of 8.3 +/- 0.1. SDS polyacrylamide gel electrophoresis showed also one single protein band with an apparent molecular weight of 7000. Biological activity was demonstrated by measuring the (3H)thymidine incorporation into DNA of cultured arterial smooth muscle cells.  相似文献   

20.
Biosynthetic incorporation of [3H]ethanolamine into proteins was assessed in the human erythroleukemia cell line K562. A single predominant labeled protein of about 50 kDa was observed following electrophoresis of cell extracts on polyacrylamide gels in the presence of sodium dodecyl sulfate. Subcellular fractionation showed this protein to distribute similarly to a 46-kDa [3H]ethanolamine-labeled protein reported previously (Tisdale, E. J., and Tartakoff, A. M. (1988) J. Biol. Chem. 263, 8244-8252). In particular, the protein was enriched in cytosolic and microsomal fractions relative to plasma membrane and thus did not appear to correspond to the class of proteins with glycoinositol phospholipid anchors, the only post-translational protein modification involving ethanolamine that had been described previously. Two-dimensional polyacrylamide gel analysis involving isoelectric focusing followed by electrophoresis in sodium dodecyl sulfate indicated that the protein was very basic, and nitrocellulose blots of one- and two-dimensional gels subjected to 3H autoradiography and immunostaining with antisera to purified rabbit elongation factor (EF) 1 alpha revealed that the protein was EF-1 alpha. Copurification of rabbit EF-1 alpha and the [3H]ethanolamine-labeled protein from K562 cells further supported this identification. Analysis of tryptic fragments produced from the copurified proteins by reverse-phase high pressure liquid chromatography showed two radiolabeled peptides. Amino acid analysis demonstrated 1 residue of ethanolamine in each peptide, and peptide sequencing revealed that the ethanolamine-containing component(s) was attached to Glu301 and Glu374 in the EF-1 alpha protein sequence deduced from a human EF-1 alpha cDNA. These data confirm a new class of post-translational protein modifications involving ethanolamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号