首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholecystokinin sulfated octapeptide (CCK-8S) was given to rats i.p. at single doses of 10 and 100 nmol/kg, respectively. It produced a modification in GABA levels in several areas of the rat brain. After 30 min of injection, the lower dose (10 nmol/kg) increased GABA levels in striatum by 31% (P<0.05). The higher dose (100 nmol/kg) enhanced GABA levels either in hippocampus by 78% (P<0.05) or in frontal cerebral cortex by 81% (P<0.05) and decreased in olfactory bulbs by 57% (P<0.01). Thus, these results show that systemic injection of CCK-8S, produced regional specific changes on GABA levels in brain, and these effects were dose-dependent. Systemic pretreatment with the CCK(B) receptor antagonist, PD 135,158, 1 mg/kg i.p., on the endogenous levels of GABA in certain regions was also studied. The selective CCK(B) receptor antagonist, PD 135,158, did not have an effect per se on the endogenous levels of GABA but prevents the action induced by the neuropeptide. We suggest that the action of CCK may be mediated via a selective action on the CCK(B) receptor subtypes.  相似文献   

2.
强啡肽A和CCK—8对大鼠脊髓突触小体摄取^45Ca的影响   总被引:1,自引:0,他引:1  
王晓京  王峻峰 《生理学报》1990,42(3):226-232
为了探讨血管紧张素Ⅱ(AⅡ)和八肽胆囊收缩素(CCK-8)这两种肽的抗阿片作用机理,本实验中观察了三种阿片类物质(吗啡、强啡肽和 DPDPE)和两种抗阿片物质(AⅡ和 CCK-8)对大鼠脊髓突触小体摄取~(45) Ca 的影响。结果表明:(1)在脊髓腹柱突触小体上,10nmol/L—1μmol/L 的吗啡、强啡肽 A(Dyn A)和 DPDPE 对~(45)Ca 摄取均有较弱的抑制作用;(2)CCK-8在浓度高达lμmol/L 时对~(45)Ca 摄取有较弱的抑制作用;(3)AⅡ在浓度高达lμmol/L时也不影响腹柱突触小体摄取~(45)Ca;(4)在背柱的突触小体制备中,上述阿片物质中 Dyn A 对~(45)Ca 摄取有较强的抑制作用,并被 k 受体阻断剂 nor-BNI 所阻断。10和100nmol/L 的 CCK-8能翻转lμmol/L Dyn A 对~(45)Ca 摄取的抑制作用;(5)A Ⅱ不能翻转Dyn A 的抑制作用。以上结果提示,CCK-8阻断 Dyn A 抑制脊髓背柱突触小体摄取 Ca~(2+)的作用可能是其行为学中抗阿片作用的机理之一。AⅡ对脊髓 Ca~(2+)摄取和 Dyn A 抑制脊髓 Ca~(2+)摄取的作用皆无影响,与行为学中观察到的 AⅡ在脊髓内不能对抗阿片镇痛的现象一致,进一步说明 CCK-8和AⅡ拮抗阿片类物质对神经末梢 Ca~(2+)摄取的影响可能是其抗阿片作用的重要机理之一。  相似文献   

3.
Cholecystokinin octapeptide (CCK-8), administered intracerebroventricularly (i.c.v.), will suppress feeding. The aim of the present study was to determine the pharmacological characteristics of this satiety inducing effect in rats. For this purpose, we employed a feeding bioassay model in 24 h fasted rats and examined the effects of CCK-8 and a variety of structurally related analogs on latency to feed after i.c.v. injection and on the amount of food and water consumed as measured after the initiation of feeding in sequential 20-min epochs for 1 h. CCK-8, given in doses of 0.1, 1 and 10 nmol, produced a dose-dependent increase in feeding latency and a reduction of food intake during the first 20 min after initiation of feeding. Food intake during the next 40 min and water consumption were not altered. Plasma levels of CCK-like immunoreactivity after an i.c.v. injection of a dose of CCK-8 which blocked feeding (10 nmol) rose insignificantly from 117 to 125 pg/ml. In contrast, at the minimally effective dose of CCK-8 after i.v. administration (10 nmol), which also produced an inhibition of feeding, the plasma level was 1430 pg/ml. This difference indicates that plasma levels of CCK after i.c.v. CCK-8 are not adequate to produce the observed feeding suppression and suggests that the effects of i.c.v. CCK-8 are not mediated by a peripheral redistribution. Systematic dose response studies revealed the following rank order of potencies: CCK-8 greater than or equal to G-17 II much greater than CCK-8 NS = G-17 I greater than or equal to CCK-4 = CCK 26-29 = 0. Only gastrin-17 II (sulfated) produced an effect comparably significant to CCK-8. I.c.v. proglumide at 2500 nmol failed to modify the effects of CCK-8 at 10 nmol after i.c.v. injection. These data demonstrate that the structural requirements for feeding suppressive activity in rat brain are the carboxyterminus with a sulfated tyrosine residue, located 6 to 7 residues from the carboxyterminus, as present in CCK-8 and gastrin-17 II.  相似文献   

4.
Xu MY  Yang DX  Wang SZ  Jin HB  Zou XH  Yang XP  Han JS 《生理学报》1998,50(4):469-473
本研究探讨了八肽胆囊收缩素(CCK-8)对抗吗啡对大鼠离体空肠电与收缩活动的作用。结果表明,吗啡能抑制ACh对空肠峰波发放和收缩的加强作用;CCK-8可对抗吗啡的作用;在此基础上,CCK-A受体拮抗剂devazepide(10nmol/L)能完全翻转CCK-8的抗吗啡作用,但是CCK-B受体拮抗剂L-365,260在10nmol/L时可部分翻转、在30nmol/L时能完全翻转CCK-8的作用。上述  相似文献   

5.
Two separate experiments were performed to localize the gastrointestinal sites of action regulating meal size (MS), intermeal interval (IMI) length and satiety ratio (SR, IMI/MS) by cholecystokinin (CCK) 8 and 33. Experiment 1: CCK-8 (0, 0.05, 0.15, 0.25 nmol/kg) was infused in the celiac artery (CA, supplies stomach and upper duodenum) or the cranial mesenteric artery (CMA, supplies small and part of the large intestine) prior to the onset of the dark cycle in free feeding, male Sprague Dawley rats and MS (normal rat chow), IMI and SR were recorded. Experiment 2: CCK-33 (0, 0.05, 0.15, 0.25 nmol/kg) were infused in the CA or the CMA, under the same experimental conditions above, and MS, IMI and SR were recorded. Experiment 1 found that CCK-8 reduces MS, prolongs the IMI and increases the SR at sites supplied by both arteries. Experiment 2 found that CCK-33 reduces MS and increases the SR at sites supplied by the CMA. We conclude that in male rats the feeding behaviors evoked by CCK-33, but not CCK-8, are regulated at specific gastrointestinal sites of action.  相似文献   

6.
In contrast to supramaximal CCK-8 or caerulein, acute or prolonged supraphysiological levels of endogenous CCK-58 do not cause pancreatitis. Compared with CCK-8, CCK-58 is a much stronger stimulant of pancreatic chloride and water secretion, equivalent to maximally effective secretin, but with a chloride-to-bicarbonate ratio characteristic of acinar fluid. Because supraphysiological endogenous CCK does not cause pancreatitis and because coadministration of secretin ameliorated caerulein- or CCK-8-induced pancreatitis, coincident with restoring pancreatic water secretion, we hypothesized that supramaximal CCK-58 would not induce pancreatitis. Conscious rats were infused intravenously with 2 or 4 nmol x kg(-1) x h(-1) of CCK-8 or synthetic rat CCK-58 for 6 h, and pancreases were examined for morphological and biochemical indexes of acute pancreatitis. A second group was treated as above while monitoring pancreatic protein and water secretion. CCK-8 at 2 nmol x kg(-1) x h(-1) caused severe edematous pancreatitis as evidenced by morphological and biochemical criteria. CCK-58 at this dose had minimal or no effect on these indexes. CCK-58 at 4 nmol x kg(-1) x h(-1) increased some indexes of pancreatic damage but less than either the 2 or 4 nmol x kg(-1) x h(-1) dose of CCK-8. Pancreatic water and protein secretion were nearly or completely abolished within 3 h of onset of CCK-8 infusion, whereas water and protein secretion were maintained near basal levels in CCK-58-treated rats. We hypothesize that supramaximal CCK-58 does not induce pancreatitis because it maintains pancreatic acinar chloride and water secretion, which are essential for exocytosis of activated zymogens. We conclude that CCK-58 may be a valuable tool for investigating events that trigger pancreatitis.  相似文献   

7.
Yang YM  Chung JM  Rhim H 《Life sciences》2006,79(18):1702-1711
The peptide cholecystokinin (CCK) is one of the major neurotransmitters modulating satiety, nociception, and anxiety behavior. Although many behavioral studies showing anti-analgesic and anxiogenic actions of CCK have been reported, less is known about its cellular action in the central nervous system (CNS). Therefore, we examined the action of CCK in rat dorsolateral periaqueductal gray (PAG) neurons using slice preparations and whole-cell patch-clamp recordings. Application of CCK-8S produced an inward current accompanied by increased spontaneous synaptic activities. The CCK-8S-induced inward current (I(CCK)) was recovered after washout and reproduced by multiple exposures. Current-voltage plots revealed that I(CCK) reversed near the equilibrium potential for K(+) ions with a decreased membrane conductance. When several K(+) channel blockers were used, application of CdCl(2), TEA, or apamin significantly reduced I(CCK). I(CCK) was also significantly reduced by the CCK(2) receptor antagonist, L-365,260, while it was not affected by the CCK(1) receptor antagonist, L-364,718. Furthermore, we examined the effects of CCK-8S on miniature excitatory postsynaptic currents (mEPSCs) in order to determine the mechanism of CCK-mediated increase on synaptic activities. We found that CCK-8S increased the frequency of mEPSCs, but had no effect on mEPSC amplitude. This presynaptic effect persisted in the presence of CdCl(2) or Ca(2+)-free bath solution, but was completely abolished by pre-treatment with BAPTA-AM, thapsigargin or L-365,260. Taken together, our results indicate that CCK can excite PAG neurons at both pre- and postsynaptic loci via the activation of CCK(2) receptors. These effects may be important for the effects of CCK on behavior and autonomic function that are mediated via PAG neurons.  相似文献   

8.
We have explored the hypothesis that the apparent greater efficiency of cholecystokinin (CCK-8) receptor-second messenger coupling compared with that of muscarinic receptor in Flow 9000 cells is due to differential feedback inhibitory control mechanisms. Pretreatment of Flow 9000 cells with the tumour-promoting protein kinase C (PKC)-activating agent 12-O-tetradecanoylphorbol 13-acetate (TPA) produced a time- and dose-dependent inhibition of CCK-8 and acetylcholine (ACh) stimulation of inositol phosphate production. The inhibition by TPA of ACh-induced PI (phosphoinositide) response involved reduction of the maximal response, but no change in the concentration of ACh required to evoke a half-maximal response. In contrast, TPA inhibition of CCK-8 responses could be overcome by increasing the CCK-8 concentrations. Flow 9000 cells pretreated with TPA exhibited a 52-68% reduction in [3H]quinuclidinyl benzilate ([3H]QNB) binding capacity, whereas [125I]CCK-8 binding was unchanged. In saponin-permeabilized Flow 9000 cells, TPA pretreatment had no effect on guanosine 5'-[gamma-thio]triphosphate (GTP[S])-induced inositol phosphate formation, indicating that G-protein linkage to phosphoinositidase C (PIC) was not affected. However, TPA significantly inhibited the potentiating effect of GTP[S] on CCK-8 and ACh activation of PI response, suggesting that the coupling between the receptors and the G-protein was impaired. The PKC-activator 1-oleoyl-2-acetylglycerol (OAG), a diacylglycerol analogue, also significantly reduced CCK-8 and ACh stimulation of inositol phosphate accumulation in these cells. Our results are consistent with the hypothesis that muscarinic activation of PI hydrolysis is subjected to rapid feedback inhibition via the 1,2-diacylglycerol-PKC pathway. CCK-receptor activation of PI turnover is modulated to a lesser extent, and this may partially explain apparent differences in the efficiency of receptor-second messenger coupling. It is proposed that TPA acting through PKC exerts its inhibitory action on muscarinic-agonist-mediated PI response mainly at the receptor level, whereas the inhibitory effect on CCK-8 response is at a site close to the receptor-G-protein coupling step.  相似文献   

9.
Liu YX  Zhang H  Ma HJ  He RR 《生理学报》2004,56(1):25-30
在36只隔离灌流颈动脉窦区的麻醉大鼠上,观察了八肽胆囊收缩素(cholecystokinin octapepide,CCK-8)对颈动脉窦压力感受器反射的影响。其结果如下:(1)以CCK-8(0.1、0.5、1.0μmol/L)隔离灌流颈动脉窦区时,压力感受器机能曲线向右上方移位,曲线最大斜率(peak slope,PS)减小,反射性血压下降幅度(reflex decrease,RD)减少,阈压(threshold pressure,TP)和饱和压(saturation pressure,SP)均增高。其中RD、PS和TP呈明显的剂量依赖性;(2)用CCK-8的非特异性受体拮抗剂丙谷胺(100μmol/L)预处理后,能明显减弱CCK-8(0.50mol/L)对压力感受器反射的抑制;(3)预先灌流一氧化氮合酶(nitric oxide synthase,NOS)阻断剂(L-NAME,100μmol/L),不能阻断CCK-8(0.5μmol/L)对压力感受器反射的影响;(4)用Ca^2 通道激动剂Bay K 8644(500nmol/L)预处理后,也能明显减弱CCK-8(0.5μmol/L)对压力感受器反射的抑制作用。以上结果提示,CCK-8是通过作用于颈动脉窦压力感受器神经元末梢上的受体而起到抑制作用的,其机制可能为抑制了牵张敏感性通道,致使Ca^2 离子内流减少,而与内皮细胞释放NO无关。  相似文献   

10.
The sulphated octapeptide of cholecystokinin (CCK-8S) was found to cause a dose-dependent increase in the basal release of aspartate, glycine, and gamma-aminobutyric acid from the striatum and the ventromedial nucleus of the hypothalamus (VMH). No effect on amino acid release was observed after electrical (VMH) or potassium (striatum) stimulation. Experiments performed using the CCKB-selective antagonist L-365,260 and the CCKA-selective antagonist L-364,718 suggested that this action of CCK-8S was mediated via the CCKB receptor. The ability of CCK-8S to evoke amino acid release was not dependent on the presence of extracellular calcium, though the effect was abolished by tetrodotoxin. Inhibition of protein kinase activity by staurosporine prevented the excitatory effects of CCK-8S on amino acid release.  相似文献   

11.
To elucidate the regulatory mechanism of acid secretion by cholecystokinin (CCK) in vivo, we compared the effects of CCK and gastrin on acid secretion and histidine decarboxylase (HDC) activity. We also examined the effects of MK-329, a specific antagonist for pancreatic-type CCK receptor, and L-365,260, a specific antagonist for gastrin-type CCK receptor, on the action of CCK. Graded doses of CCK or gastrin were intravenously infused into conscious rats with gastric fistula. Gastrin-17 I infusion up to 10 nmol/kg/h resulted in dose-related increases in acid secretion. CCK-8 infusion also caused an increase in acid secretion. However, it reached a peak with 0.3 nmol/kg/h CCK-8 and attenuated with higher concentrations of CCK-8. This attenuating effect of a higher dose of CCK was reversed by MK-329, but not by L-365,260. Both CCK and gastrin were potent in increasing fundic HDC activity, and the effect of CCK on HDC activity was significantly inhibited by L-365,260, but not by MK-329. Taken together, the present study suggests that CCK and gastrin stimulate histamine formation via a gastrin-type CCK receptor, and the attenuating action of CCK with higher concentrations on acid secretion in vivo is mediated by a pancreatic-type CCK receptor.  相似文献   

12.
The effects of L364718, a new CCK receptor antagonist, on CCK-8 stimulated pancreatic secretion and PP release were examined in three conscious dogs with pancreatic fistulas. L364718 (20 nmol/kg) caused a potent inhibition of CCK-8 stimulated pancreatic protein, amylase and trypsin secretion but not of volume and bicarbonate secretion. Release of PP by CCK was also significantly suppressed by L364718. The degree of inhibition by L364718 was dependent upon the amount of CCK-8 infused. This study demonstrates that L364718 acts as a potent antagonist of CCK's action on pancreatic enzyme secretion and PP release in dogs and suggests that this agent might be a useful tool for studying the physiological role of CCK in conscious animals.  相似文献   

13.
Studies were designed to examine the hypothesis that the renal medulla of Dahl salt-sensitive (Dahl S) rats has a reduced capacity to generate nitric oxide (NO), which diminishes the ability to buffer against the chronic hypertensive effects of small elevations of circulating ANG II. NO synthase (NOS) activity in the outer medulla of Dahl S rats (arginine-citrulline conversion assay) was significantly reduced. This decrease in NOS activity was associated with the downregulation of protein expression of NOS I, NOS II, and NOS III isoforms in this region as determined by Western blot analysis. In anesthetized Dahl S rats, we observed that a low subpressor intravenous infusion of ANG II (5 ng. kg(-1). min(-1)) did not increase the concentration of NO in the renal medulla as measured by a microdialysis with oxyhemoglobin trapping technique. In contrast, ANG II produced a 38% increase in the concentration of NO (87 +/- 8 to 117 +/- 8 nmol/l) in the outer medulla of Brown-Norway (BN) rats. The same intravenous dose of ANG II reduced renal medullary blood flow as determined by laser-Doppler flowmetry in Dahl S, but not in BN rats. A 7-day intravenous ANG II infusion at a dose of 3 ng. kg(-1). min(-1) did not change mean arterial pressure (MAP) in the BN rats but increased MAP in Dahl S rats from 120 +/- 2 to 138 +/- 2 mmHg (P < 0.05). ANG II failed to increase MAP after NO substrate was provided by infusion of L-arginine (300 microg. kg(-1). min(-1)) into the renal medulla of Dahl S rats. Intravenous infusion of L-arginine at the same dose had no effect on the ANG II-induced hypertension. These results indicate that an impaired NO counterregulatory system in the outer medulla of Dahl S rats makes them more susceptible to the hypertensive actions of small elevations of ANG II.  相似文献   

14.
It is known that cholecystokinin (CCK) acts in a paracrine fashion to increase pancreatic exocrine secretion via vagal circuits. Recent evidence, however, suggests that CCK-8s actions are not restricted to afferent vagal fibers, but also affect brain stem structures directly. Within the brain stem, preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) send efferent fibers to subdiaphragmatic viscera, including the pancreas. Our aims were to investigate whether DMV neurons responded to exogenously applied CCK-8s and, if so, the mechanism of action. Using whole cell patch-clamp recordings we show that perfusion with CCK-8s induced a concentration-dependent excitation in approximately 60% of identified pancreas-projecting DMV neurons. The depolarization was significantly reduced by tetrodotoxin, suggesting both direct (on the DMV membrane) and indirect (on local synaptic circuits) effects. Indeed, CCK-8s increased the frequency of miniature excitatory currents onto DMV neurons. The CCK-A antagonist, lorglumide, prevented the CCK-8s-mediated excitation whereas the CCK-B preferring agonist, CCK-nonsulfated, had no effect, suggesting the involvement of CCK-A receptors only. In voltage clamp, the CCK-8s-induced inward current reversed at -106 +/- 3 mV and the input resistance increased by 150 +/- 15%, suggesting an effect mediated by the closure of a potassium conductance. Indeed, CCK-8s reduced both the amplitude and the time constant of decay of a calcium-dependent potassium conductance. When tested with pancreatic polypeptide (which reduces pancreatic exocrine secretion), cells that responded to CCK-8s with an excitation were, instead, inhibited by pancreatic polypeptide. These data indicate that CCK-8s may control pancreas-exocrine secretion also via an effect on pancreas-projecting DMV neurons.  相似文献   

15.
Evidence suggests that cholecystokinin-octapeptide (CCK-8)-induced activation of a Cl- conductance in the membrane of zymogen granules (ZG) is closely related to pancreatic enzyme secretion. Following stimulation of isolated pancreatic acinar cells with increasing concentrations of CCK-8, the Cl- conductance in the ZG from these acini increased, reached a maximum of 40 +/- 7% above basal Cl- conductance at 10(-12) M CCK-8, and then decreased at CCK-8 concentrations higher than 10(-9) M to a level comparable to the basal Cl- conductance. We had interpreted the inhibitory action of high CCK-8 concentrations to be due to the generation of high concentrations of diacylglycerol and/or its metabolites by an "overstimulation" of phospholipase C at supramaximal CCK-8 concentrations. We now show that EGF abolishes the downstroke of the dose response curve for CCK-8-induced ZG Cl- conductance and shifts the stimulatory response to higher CCK-8 concentrations. Similarly in a nominally "Ca(2+)-free buffer" (free [Ca2+] approximately 0.2 nM), stimulated Cl- conductance at 10(-12) M CCK-8 is nearly abolished and the decreased Cl- conductance at 10(-8) M CCK-8 is increased to the level of maximal stimulation at 10(-12) M CCK-8. We conclude that both EGF and low [Ca2+] affect CCK-8-induced ZG Cl- conductance by decreasing phospholipase C activity.  相似文献   

16.
Si XM  Huang L  Lv P  Xia H  Luo HS 《Regulatory peptides》2006,136(1-3):64-71
OBJECTIVE: To illustrate the existence of bile regurgitation under stress condition, and explore the possible effects and related mechanism of changes of plasma cholecystokinin octapeptide (CCK-8) and intragastric pH on stress-induced bile regurgitation in rats. METHODS: (1) Changes in plasma CCK-8 and gastric bile concentration were respectively measured by using radioimmunoassay (RIA) method while simultaneously calculating gastric ulcer index (UI) and intragastric pH; (2) Each isolated gastric strips were suspended in a tissue chamber to record the contractile responses by polyphysiograph; (3) The responsiveness of gastric smooth muscle cells (SMCs) to sulfated cholecystokinin octapeptide (CCK-8S) were examined using fura-2-loaded microfluorimetric measurement of intracellular calcium concentration ([Ca(2+)]i); (4) The current of L-type calcium channels (I(CaL)) of SMCs were recorded by patch clamp techniques. RESULTS: (1) Compared with the normal control group, plasma CCK-8 and gastric bile concentration significantly increased during stress (p<0.01) and both simultaneously reached the peak at the time point of 2 h after stress; UI and intragastric pH apparently increased (p<0.01); (2) Significant changes to CCK-8S were found in the mean contractile amplitude and frequency of circular muscle (CM) and longitudinal muscle (LM) of gastric antrum and pylorus; (3) CCK-8S-evoked significant increase in [Ca(2+)]i (p<0.01) could be suppressed by CCK-A receptor (CCK-AR) antagonist; whereas a small but significant increase was still elicited by CCK-8S under condition of the removal of extracellular calcium or by given nifidipine; (4) CCK-8S-intensified calcium current (I(CaL)) apparently inhibited by respective administration of nifidipine, Ca(2+)-ATPase inhibitors or calcium dependent chloride channel (I(Cl-Ca)) blocker (p<0.01). CONCLUSION: Gastric mucosal damage induced by bile regurgitation is closely connected with gastric antrum and pylorus dysmotility evoked by CCK-8 during the stress. CCK-8S-evoked [Ca(2+)]i increase in gastric antrum and pylorus SMC depends on the release of intracellular calcium stores which activates L-type voltage-dependent calcium channels (VDCC) through the activation of calcium dependent chloride channels.  相似文献   

17.
Total or selective branch vagotomy attenuates the reduction of cumulative food intake by cholecystokinin (CCK)-8 and CCK-33 respectively. However, the role of the sympathetic innervation of the gut and the role of the vagus nerve in feeding responses, which include meal size (MS) and intermeal interval (IMI), evoked by CCK-8 and CCK-33 have not been evaluated. Here, we tested the effects of total subdiaphragmatic vagotomy (VGX) and celiaco-mesenteric ganglionectomy (CMGX) on the previous feeding responses by CCK-8 and CCK-33 (0, 1, 3, and 5 nmol/kg given intraperitoneally). We found (1) that both peptides reduced meal size and CCK-8 (5 nmol) and CCK-33 (1 and 3 nmol) prolonged IMI, (2) that VGX attenuated the reduction of MS but failed to attenuate the prolongation of IMI by both peptides and (3) that CMGX attenuated the reduction of meal size by CCK-8 and the prolongation of IMI by both peptides. Therefore, the feeding responses evoked by CCK-8 require intact vagus and splanchnic nerves: the reduction of MS by CCK-33 requires an intact vagus nerve, and the prolongation of IMI requires the splanchnic nerve. These findings demonstrate the differential peripheral neuronal mediation of the feeding responses evoked by CCK-8 and CCK-33.  相似文献   

18.
G Katsuura  S Itoh 《Peptides》1986,7(5):809-814
The effect of cholecystokinin tetrapeptide amide (CCK-4) injected into the lateral cerebral ventricle on memory processes was examined by a one-trial passive avoidance test in the rat. CCK-4 injection 30 and 60 min before the first retention test caused a shortened latency to response, and its chronic infusion into the lateral ventricle at a rate of 2 micrograms/day shortened the latency of the response to the level of almost complete amnesia. CCK-4 also reduced arginine-vasopressin effect on memory processes when administered simultaneously 30 min before the first retention test, but its amnestic action is short-lasting and antagonized by relatively small amounts of cholecystokinin octapeptide (CCK-8). In addition, the shortened latency to response was admitted to be not always associated with the motility effect of CCK-4.  相似文献   

19.
The effect of cervical vagus nerve stimulation, gastric distension and CCK-8S administration was studied on the activity of 120 neurons located in the nucleus tractus solitarius (NTS) of anesthetized newborn lambs. One hundred cells responded to the three different inputs.The distribution of the cells in the NTS was from 3 mm rostral to 3 mm caudal to the obex, the major responsive cells being located at the level of the obex. Neurons were either excited or inhibited by gastric distension and CCK-8S, and the responses to these two stimuli were always in the same direction. A small number of cells responded to gastric distension and CCK-8S but not to vagus nerve stimulation.Injection of the CCK-A receptor antagonist 2-NAP abolished both the responses to CCK-8S and to gastric distension. The results are consistent with the idea that CCK-8S acts directly on vagal mechanoreceptive endings in the gastric corpus close to duodenum.These results from lambs may reflect the pathway by which gastric distension and peripheral CCK-8S modulate NTS cells activity during colostrum ingestion, which could in turn activate structures related to learning and memory processes involved in the development of mother preference.  相似文献   

20.
The effect of prolonged protein kinase C activation on cholecystokinin octapeptide (CCK-8)-induced amylase secretion from rabbit pancreatic acini was studied by means of the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). The phorbol ester itself increased basal amylase secretion but inhibited completely the secretory response to relatively low concentrations of CCK-8. The inhibitory action of TPA on CCK-8-induced amylase secretion was paralleled by inhibition of CCK-8-induced calcium mobilization but not by inhibition of CCK-8-induced breakdown of 32P-labelled phosphatidylinositol 4,5-bisphosphate. The results presented suggest that protein kinase C, or one of its phosphorylated products, inhibits the CCK-8-stimulated pathway leading to secretion at a level beyond the secretagogue-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate. Inhibition of the initial, inositol 1,4,5-trisphosphate-mediated and extracellular calcium-independent, increase in free cytosolic calcium concentration, together with the findings of others, suggests that the efficacy of this inositol-phosphate to release calcium is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号