首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unfolding-refolding of proteins is a cooperative process and, as judged by equilibrium properties, occurs in one step involving the native,N, and the unfoldedU, conformational states. Kinetic studies have shown that the denatured protein exists as a mixture of slow-(U)Sand fast-(U)Frefolding forms produced by proline peptidecis-trans isomerization. Proline residues inU Fare in the same configuration as in the native protein while they are in non-native configuration inU S. For protein folding to occur quicklyU Smust be converted intoU F. The fact that the equilibrium and kinetic properties of are the same as those found for prolinecis-trans isomerization taken together with the absence of slow phase in the kinetics of refolding of a protein devoid of proline, support this view. However, the absence of a linear correlation between half-time of reactivation of denatured enzymes and their proline-contents, as well as the dissimilarities in the kinetic properties of in unfolding and refolding experiments are not consistent with the model. Conformational energy calculation and experimental results on refolding of proteins suggest that some proline residues are non-essential. They will not block protein folding even in wrong isomeric form. The native-like folded structure with incorrect proline isomers will serve as intermediate state(s) in which these prolines will more readily isomerize to the correct isomeric form. The picture becomes more complex when one considers the consequence ofcis-trans isomerism of non-proline residues on protein folding.  相似文献   

2.
Wedemeyer WJ  Welker E  Scheraga HA 《Biochemistry》2002,41(50):14637-14644
Proline cis-trans isomerization plays a key role in the rate-determining steps of protein folding. The energetic origin of this isomerization process is summarized, and the folding and unfolding of disulfide-intact bovine pancreatic ribonuclease A is used as an example to illustrate the kinetics and structural features of conformational changes from the heterogeneous unfolded state (consisting of cis and trans isomers of X-Pro peptide groups) to the native structure in which only one set of proline isomers is present.  相似文献   

3.
Proline peptide isomerization and the reactivation of denatured enzymes   总被引:1,自引:0,他引:1  
The kinetics of slow phase reactivation of 11 single chain denatured enzymes containing between 6 and 28 proline residues were each found to be first-order having half-times ranging from 0.15 to 12.1 minutes, respectively, at 25 °C. The reactivation kinetics of selected enzymes are independent of solvent viscosity and give an activation energy of 19 kcal/mol. These results are consistent with the proposal that cis/trans proline isomerization in the denatured state is responsible for the slow phase of enzyme refolding/reactivation and with biosynthetic rates for enzyme production.  相似文献   

4.
Autoinhibition is being widely used in nature to repress otherwise constitutive protein activities and is typically regulated by extrinsic factors. Here we show that autoinhibition can be controlled by an intrinsic intramolecular switch afforded by prolyl cis-trans isomerization. We find that a proline on the linker tethering the two SH3 domains of the Crk adaptor protein interconverts between the cis and trans conformation. In the cis conformation, the two SH3 domains interact intramolecularly, thereby forming the basis of an autoinhibitory mechanism. Conversely, in the trans conformation Crk exists in an extended, uninhibited conformation that is marginally populated but serves to activate the protein upon ligand binding. Interconversion between the cis and trans, and, hence, of the autoinhibited and activated conformations, is accelerated by the action of peptidyl-prolyl isomerases. Proline isomerization appears to make an ideal switch that can regulate the kinetics of activation, thereby modulating the dynamics of signal response.  相似文献   

5.
A murine cardiac lambda gt11 expression library was screened with an amphipathic helix antibody, and a recombinant representing the C-terminal 194 residues of murine HSP90 (HSP84) was cloned. Both recombinant and native HSP90s were then found to rapidly convert a basic helix-loop-helix protein (MyoD1) from an inactive to an active conformation, as assayed by sequence-specific DNA binding. The conversion process involves a transient interaction between HSP90 and MyoD1 and does not result in the formation of a stable tertiary complex. Conversion does not require ATP and occurs stoichiometrically in a dose-dependent fashion. HSP90 is an abundant, ubiquitous, and highly conserved protein present in most eukaryotic cells. These results provide direct evidence that HSP90 can affect the conformational structure of a DNA-binding protein.  相似文献   

6.
Bhat R  Wedemeyer WJ  Scheraga HA 《Biochemistry》2003,42(19):5722-5728
The kinetics of cis-trans isomerization of individual X-Pro peptide groups is used to study the backbone dynamics of bovine pancreatic ribonuclease A (RNase A). We previously developed and validated a fluorescence method for monitoring the cis-trans isomerization of the Tyr92-Pro93 and Asn113-Pro114 peptide groups of RNase A under unfolding conditions [Juminaga, D., Wedemeyer, W. J., and Scheraga, H. A. (1998) Biochemistry 37, 11614-11620]. The essence of this method is to introduce a fluorescent residue (Tyr or Trp) in a position adjacent to the isomerizing proline (if one is not already present) and to eliminate the fluorescence of other such residues adjacent to prolines by mutating them to phenylalanine. Here, we extend this method to observe the cis-trans isomerization of these peptide groups under folding conditions using two site-directed mutants (Y92F and Y115F) of RNase A. Both isomerizations decelerate with increasing concentrations of GdnHCl, with nearly identical m values (1.11 and 1.19 M(-1), respectively) and extrapolated zero-GdnHCl time constants (42 and 32 s, respectively); by contrast, under unfolding conditions, the cis-trans isomerizations of both Pro93 and Pro114 are independent of GdnHCl concentration. Remarkably, the isomerization rates under folding conditions at GdnHCl concentrations above 1 M are significantly slower than those measured under unfolding conditions. The temperature dependence of the Pro114 isomerization under folding conditions is also unusual; whereas Pro93 exhibits an activation energy typical of proline isomerization (19.4 kcal/mol), Pro114 exhibits a sharply reduced activation energy of 5.7 kcal/mol. A structurally plausible model accounts for these results and, in particular, shows that folding conditions strongly accelerate the cis-trans isomerization of both peptide groups to their native cis conformation, suggesting the presence of flickering local structure in their beta-hairpins.  相似文献   

7.
Stress or heat shock proteins (HSPs) such as HSP27 and HSP70 are expressed in response to a wide variety of physiological and environmental insults including heat, reactive oxygen species or anticancer drugs. Their overexpression allows cells to survive to otherwise lethal conditions. Several different mechanisms may account for the cytoprotective activity of HSP27 and HSP70. First, both proteins are powerful chaperones. Second, both inhibit key effectors of the apoptotic machinery including the apoptosome, the caspase activation complex (both HSP27 and HSP70), and apoptosis inducing factor (only HSP70). Third, they both play a role in the proteasome-mediated degradation of apoptosis-regulatory proteins. HSP27 and HSP70 may participate in oncogenesis, as suggested by the fact that overexpression of heat shock proteins can increase the tumorigenic potential of tumor cells. The down-regulation or selective inhibition of HSP70 might constitute a valuable strategy for the treatment of cancer.  相似文献   

8.
Stress or heat shock proteins (HSPs) such as HSP27 and HSP70 are expressed in response to a wide variety of physiological and environmental insults including heat, reactive oxygen species or anticancer drugs. Their overexpression allows cells to survive to otherwise lethal conditions. Several different mechanisms may account for the cytoprotective activity of HSP27 and HSP70. First, both proteins are powerful chaperones. Second, both inhibit key effectors of the apoptotic machinery including the apoptosome, the caspase activation complex (both HSP27 and HSP70), and apoptosis inducing factor (only HSP70). Third, they both play a role in the proteasome-mediated degradation of apoptosis-regulatory proteins. HSP27 and HSP70 may participate in oncogenesis, as suggested by the fact that overexpression of heat shock proteins can increase the tumorigenic potential of tumor cells. The down-regulation or selective inhibition of HSP70 might constitute a valuable strategy for the treatment of cancer.  相似文献   

9.
10.
11.
F X Schmid 《FEBS letters》1986,198(2):217-220
The trans----cis isomerization of Pro 93 was measured during refolding of bovine ribonuclease A. This isomerization is slow (tau = 500 s) under marginally stable folding conditions of 2.0 M GdmCl, pH 6, at 10 degrees C. However, it is strongly accelerated (tau = 100 s) in samples which, prior to isomerization, had been converted to a folding intermediate by a 15 s refolding pulse under strongly native conditions (0.8 M ammonium sulfate, 0 degree C). The results demonstrate that extensive folding is possible before Pro 93 isomerizes to its native cis state and that the presence of structural folding intermediates leads to a marked increase in the rate of subsequent proline isomerization.  相似文献   

12.
HSP27对细胞迁移的调控   总被引:1,自引:0,他引:1  
细胞迁移是多细胞生物的一项基本生理过程,不仅在血管重建、炎症反应、发育、伤口愈合等方面发挥重要作用,而且还与肿瘤细胞侵袭和转移有关.热休克蛋白27(heat shock protein27,HSP27)是小型热休克蛋白家族中研究最广泛的成员之一,普遍存在于生物体内.HSP27是一种多功能蛋白质,可以通过黏着斑和肌动蛋白调节细胞迁移.另外,HSP27还可调控肿瘤早期的上皮间质转化,影响癌症转移.本文整理了近期关于HSP27参与细胞迁移及相应的肿瘤细胞转移方面的研究,探究HSP27在临床医学研究领域的价值和应用前景.  相似文献   

13.
14.
汤明  陈森林  曾亮 《现代生物医学进展》2007,7(7):1039-1041,F0003
目的1观察热休克蛋白60和热休克蛋白27在结直肠癌中的表达及意义。方法:收集结直肠癌80例,其中淋巴结转移40例(转移组),无淋巴结转移40例(无转移组);另外,在结直肠癌80例中,有结直肠腺瘤(腺瘤组)以及距肿块15cm以上的正常肠粘膜(对照组)各40例。应用免疫组织化学SP法检测组织中蛋白的表达。结果:HSP60的表达主要定位在癌细胞胞浆,在对照组、腺瘤组、非转移组、转移组中的表达阳性率分别为25%、30%、57.5%、90%,组间比较发现,对照组与转移组、腺瘤组与转移组、转移组与非转移组(x^2=10.912,P〈0.001)的HSP60阳性表达率存在统计学差异;而对照组与腺瘤和非转移组间以及腺瘤与非转移组间无统计学差异。HSP27的表达主要定位在癌细胞的胞浆,在对照组、腺瘤组、非转移组、转移组的表达阳性率分别为5%,35%,50%,90%,组间比较发现,对照组分别与无淋巴结转移组、淋巴结转移组;腺瘤组分别与转移组;非转移组与转移组间存在统计学差异,腺瘤与非转移组间无统计学差异。HSP60和HSP27表达间无统计学相关。结论:HSP27表达可能与结直肠癌发生和转移相关。而HSP60的表达可能在结直肠癌转移中具有重要意义。  相似文献   

15.
Most of the members of the superfamily of mammalian small heat shock or stress proteins are abundant in muscles where they play a role in muscle function and maintenance of muscle integrity. One member of this protein superfamily, human HSP27, is rapidly phosphorylated on three serine residues (Ser(15), Ser(78), and Ser(82)) during cellular response to a number of extracellular factors. To understand better the role of HSP27, we performed a yeast two-hybrid screen of a human heart cDNA library for HSP27-interacting proteins. By using the triple aspartate mutant, a mimic of phosphorylated HSP27, as "bait" construct, a protein with a molecular mass of 21.6 kDa was identified as an HSP27-binding protein. Sequence analysis revealed that this new protein shares an overall sequence identity of 33% with human HSP27. This protein also contains the alpha-crystallin domain in its C-terminal half, a hallmark of the superfamily of small stress proteins. Thus, the new protein itself is a member of this protein superfamily, and consequently we designated it HSP22. According to the two-hybrid data, HSP22 interacts preferentially with the triple aspartate form of HSP27 as compared with wild-type HSP27. HSP22 is expressed predominantly in muscles. In vitro, HSP22 is phosphorylated by protein kinase C (at residues Ser(14) and Thr(63)) and by p44 mitogen-activated protein kinase (at residues Ser(27) and Thr(87)) but not by MAPKAPK-2.  相似文献   

16.
The purpose of this study was to investigate the effect of manganese (Mn)-induced cytotoxicity on heat shock proteins in chicken spleen lymphocytes. Lymphocytes were cultured in medium in the absence and presence of MnCl2 (2?×?10?4, 4?×?10?4, 6?×?10?4, 8?×?10?4, 10?×?10?4, and 12?×?10?4 mmol/L) for 12, 24, 36, and 48 h in vitro. Then, the mRNA levels of HSP27, HSP40, HSP60, HSP70, and HSP90 were examined by real-time quantitative PCR. The results showed that the mRNA levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in all treatment groups at all time points, except mRNA levels of HSP27 at 48 h, had the same tendency. As manganese concentration increased, the mRNA expression of the heat shock proteins first increased and then decreased. In other words, we demonstrated that the mRNA expression of the heat shock proteins was induced at lower concentrations of manganese and was inhibited at higher concentrations. Mn had a dosage-dependent effect on HSP27, HSP40, HSP60, HSP70, and HSP90 mRNA expression in chicken spleen lymphocytes in vitro.  相似文献   

17.
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.Key Words: apoptosis, differentiation, heat shock proteins, chaperones, cancer cells, anticancer drugs  相似文献   

18.
Previous studies on the refolding of the alpha subunit of tryptophan synthase from Escherichia coli assigned two slow refolding phases to rate-limiting isomerizations of two 'essential' proline residues, one in each of the two domains of the protein (Matthews, C.R., Crisanti, M.M., Manz, J.T. and Gepner, G.L. (1983) Biochemistry 22, 1445-1452). The double-jump experiment (Brandts, J.F., Halvorson, H.R. and Brennan, M. (1975) Biochemistry 14, 4953-4963) was used to further investigate this phenomenon. The reaction assigned to the carboxyl domain is consistent with the proline isomerization hypothesis. The amino domain process is more rapid than expected for proline isomerization and may reflect another type of slow folding reaction. The results permit a further refinement of the folding model for the alpha subunit and demonstrate the existence of a third unfolded species whose folding is not limited by either of these two reactions.  相似文献   

19.
Administration of arginine vasopressin (AVP) time-dependently induced the phosphorylation of heat shock protein 27 (HSP27) at Ser-15 and Ser-85 in smooth muscle of aorta in vivo. The AVP-induced phosphorylation of HSP27 at Ser-15 and Ser-85 was inhibited by a V1a receptor antagonist but not by a V2 receptor antagonist. In cultured aortic smooth muscle A10 cells, AVP markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85. The AVP-induced phosphorylation of HSP27 was attenuated by SB203580 and PD169316, inhibitors of p38 mitogen-activated protein (MAP) kinase, but not by PD98059, a MEK inhibitor. These results strongly suggest that AVP phosphorylates HSP27 via p38 MAP kinase in aortic smooth muscle cells.  相似文献   

20.
The effect of C-terminal mutations of HSP60 on protein folding   总被引:1,自引:0,他引:1  
HSP60 is an essential gene in Saccharomyces cerevisiae. The protein forms homotetradecameric double toroid complexes. The flexible C-terminal end of each subunit, which is hydrophobic in nature, protrudes inside the central cavity where protein folding occurs. In order to study the functional role of the C-terminus of Hsp60, we generated and characterized yeast strains expressing mutants of Hsp60 proteins. Most of the yeast strains expressing Hsp60 with C-terminal deletions grew normally, unless the deletion impaired the interaction between neighboring subunits. The cells carrying Hsp60 mutants with an epitope of influenza hemagglutinin (HA) and T7 alone in the C-terminal region grew normally, but the mutant containing both HA and T7 was unable to grow in nonfermentable carbon sources. In vitro biochemical assays were performed using purified Hsp60 proteins. All the mutants examined remained capable of interacting with Hsp10 in a nucleotide-dependent manner. However, binding and/or refolding of denatured rhodanese became defective in most of the hsp60 mutants. Therefore, the hydrophobic C-terminal tail of Hsp60 plays an important role in the refolding of protein substrates, although it is flexible in structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号