首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.  相似文献   

2.
The ubiquitous small heat shock proteins are essential elements in cellular protection, through a molecular chaperone activity. Among them, human small heat shock protein HspB1, HspB4 and HspB5 are involved in oncogenesis, anti-apoptotic activity and lens transparency. Therefore, these proteins are potential therapeutic targets in many diseases. Their general chaperone activity is related to their dynamic and multiple oligomeric structures, which are still poorly understood. The tissue selective distribution of HspB1 and HspB4, two cellular partners of HspB5, suggests that these two proteins might have evolved to play distinct physiological functions. Moreover, hetero-complex formation seems to be favoured in?vivo, yet the functional specificity of the HspB1-HspB5 and HspB4-HspB5 hetero-complexes compared to the homo-oligomers remains unclear in the stress response pathway. A powerful approach combining biochemistry, biophysics and bioinformatics, allowed us to compare the different assemblies, with a special emphasis on the structural data, subunit exchange properties, activity and sequence evolution. We showed that they all exhibit different properties, from structural organization in physiological versus stress conditions, to chaperone-like activity, whatever the level of sequence conservation. Subunit exchange kinetics leading to HspB1-HspB5 or HspB4-HspB5 hetero-complex formation is also different between these two complexes: HspB5 exchanges more rapidly subunits with HspB1 than with HspB4. The relative sequence conservation in the sHSP superfamily does hide important structural heterogeneity and flexibility, which confer an enlarged range of different surface necessary to efficiently form complexes with various stress-induced cellular targets. Our data suggest that the formation of hetero-complexes could be an original evolutionary strategy to gain new cellular functions.  相似文献   

3.
Human HspB1 (also denoted Hsp27) is an oligomeric anti-apoptotic protein that has tumorigenic and metastatic roles. To approach the structural organizations of HspB1 that are active in response to apoptosis inducers acting through different pathways, we have analyzed the relative protective efficiency induced by this protein as well its localization, oligomerization and phosphorylation. HeLa cells, that constitutively express high levels of HspB1 were treated with either etoposide, Fas agonist antibody, staurosporine or cytochalasin D. Variability in HspB1 efficiency to interfere with the different apoptotic transduction pathways induced by these agents were detected. Moreover, inducer-specific dynamic changes in HspB1 localization, native size and phosphorylation were observed, that differed from those observed after heat shock. Etoposide and Fas treatments gradually shifted HspB1 towards large but differently phosphorylated oligomeric structures. In contrast, staurosporine and cytochalasin D induced the rapid but transient formation of small oligomers before large structures were formed. These events correlated with inducer-specific phosphorylations of HspB1. Of interest, the formation of small oligomers in response to staurosporine and cytochalasin D was time correlated with the rapid disruption of F-actin. The subsequent, or gradual in the case of etoposide and Fas, formation of large oligomeric structures was a later event concomitant with the early phase of caspase activation. These observations support the hypothesis that HspB1 has the ability, through specific changes in its structural organization, to adapt and interfere at several levels with challenges triggered by different signal transduction pathways upstream of the execution phase of apoptosis.  相似文献   

4.
Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin) polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s) with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.  相似文献   

5.
Small heat shock proteins (sHSPs) are essential ATP-independent chaperones that protect the cellular proteome. These proteins assemble into polydisperse oligomeric structures, the composition of which dramatically affects their chaperone activity. The biomolecular consequences of variations in sHSP ratios, especially inside living cells, remain elusive. Here, we study the consequences of altering the relative expression levels of HspB2 and HspB3 in HEK293T cells. These chaperones are partners in a hetero-oligomeric complex, and genetic mutations that abolish their mutual interaction are associated with myopathic disorders.HspB2 displays three distinct phenotypes when co-expressed with HspB3 at varying ratios. Expression of HspB2 alone leads to formation of liquid nuclear condensates, while shifting the stoichiometry towards HspB3 resulted in the formation of large solid-like aggregates. Only cells co-expressing HspB2 with a limited amount of HspB3 formed fully soluble complexes that were distributed homogeneously throughout the nucleus. Strikingly, both condensates and aggregates were reversible, as shifting the HspB2:HspB3 balance in situ resulted in dissolution of these structures.To uncover the molecular composition of HspB2 condensates and aggregates, we used APEX-mediated proximity labelling. Most proteins interact transiently with the condensates and were neither enriched nor depleted in these cells. In contrast, we found that HspB2:HspB3 aggregates sequestered several disordered proteins and autophagy factors, suggesting that the cell is actively attempting to clear these aggregates. This study presents a striking example of how changes in the relative expression levels of interacting proteins affects their phase behavior. Our approach could be applied to study the role of protein stoichiometry and the influence of client binding on phase behavior in other biomolecular condensates and aggregates.  相似文献   

6.
Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST fusion proteins with MDH and CS, is modulated by both sHsp oligomeric conformation and by variations of sHsp sequences.  相似文献   

7.
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.  相似文献   

8.
9.
Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability. We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.  相似文献   

10.
Human small heat shock protein HspB6 (Hsp20) was modified by metabolic α-dicarbonyl compound methylglyoxal (MGO). At low MGO/HspB6 molar ratio, Arg13, Arg14, Arg27, and Arg102 were the primary sites of MGO modification. At high MGO/HspB6 ratio, practically, all Arg and Lys residues of HspB6 were modified. Both mild and extensive MGO modification decreased susceptibility of HspB6 to trypsinolysis and prevented its heat-induced aggregation. Modification by MGO was accompanied by formation of small quantities of chemically crosslinked dimers and did not dramatically affect quaternary structure of HspB6. Mild modification by MGO did not affect whereas extensive modification decreased interaction of HspB6 with HspB1. Phosphorylation of HspB6 by cyclic adenosine monophosphate (cAMP)-dependent protein kinase was inhibited after mild modification and completely prevented after extensive modification by MGO. Chaperone-like activity of HspB6 measured with subfragment 1 of skeletal myosin was enhanced after MGO modifications. It is concluded that Arg residues located in the N-terminal domain of HspB6 are easily accessible to MGO modification and that even mild modification by MGO affects susceptibility to trypsinolysis, phosphorylation by cAMP-dependent protein kinase, and chaperone-like activity of HspB6.  相似文献   

11.
In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails.  相似文献   

12.
Mutations in the alpha-crystallin domain of 4 of the small heat shock proteins (sHsp) (Hsp27/HspB1, alphaA-crystallin/ HspB4, alphaB-crystallin/HspB5, and HspB8) are responsible for dominant inherited diseases in humans. One such mutation at a highly conserved arginine residue was shown to cause major conformational defects and intracellular aggregation of alphaA- and alphaB-crystallins and HspB8. Here, we studied the effect of this Arg mutation on the structure and function of Hsp27. Chinese hamster Hsp27 with Arg148 replaced by Gly (Hsp27R148G) formed dimers in vitro and in vivo, which contrasted with the 12- or 24-subunit oligomers formed by the wild-type protein (Hsp27WT). Despite these alterations, Hsp27R148G had a chaperone activity almost as high as Hsp27WT. The dimers of Hsp27R148G did not further deoligomerize on phosphorylation and like the dimers formed by phosphorylated Hsp27WT were not affected by the deletion of the N-terminal WD/EPF (single letter amino acid code) motif, suggesting that mutation of Arg148, deletion of the N-terminal WD/EPF motif, and phosphorylation of Ser90 may produce similar structural perturbations. Nevertheless, the structure of Hsp27R148G appeared unstable, and the mutated protein accumulated as aggregates in many cells. Both a lower basal level of phosphorylation of Hsp27R148G and the coexpression of Hsp27WT could reduce the frequency of formation of these aggregates, suggesting possible mechanisms regulating the onset of the sHsp-mediated inherited diseases.  相似文献   

13.
Temperature-induced conformational changes of reduced and oxidized HspB1 crosslinked by disulfide bond between single Cys137 of neighboring monomers were analyzed by means of different techniques. Heating of reduced HspB1 was accompanied by irreversible changes of Trp fluorescence, whereas oxidized HspB1 underwent completely reversible changes of fluorescence. Increase of the temperature in the range of 20–70 °C was accompanied by self-association of both reduced and oxidized protein. Further increase of the temperature led to formation of heterogeneous mixture of large self-associated complexes of reduced HspB1 and to formation of smaller and less heterogeneous complexes of oxidized HspB1. Heat-induced changes of oligomeric state of reduced HspB1 were only partially reversible, whereas the corresponding changes of oligomeric state of oxidized HspB1 were almost completely reversible. Oxidation resulted in decrease of chaperone-like activity of HspB1. It is concluded that oxidative stress, inducing formation of disulfide bond, can affect stability and conformational mobility of human HspB1.  相似文献   

14.
Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber.  相似文献   

15.
16.
Fluorescent chimeras composed of enhanced cyan (or enhanced yellow) fluorescent proteins (ECFP or EYFP) and one of the four human small heat shock proteins (HspB1, HspB5, HspB6 or HspB8) were expressed in E. coli and purified. Fluorescent chimeras were used for investigation of heterooligomeric complexes formed by different small heat shock proteins (sHsp) and for analysis of their subunit exchange. EYFP-HspB1 and ECFP-HspB6 form heterooligomeric complex with apparent molecular weight of ∼280 kDa containing equimolar quantities of both sHsp. EYFP-HspB5 and ECFP-HspB6 formed heterogeneous oligomeric complexes. Fluorescent proteins inside heterooligomeric complexes formed by HspB1/HspB6 and HspB5/HspB6 chimeras are closely located, making possible effective fluorescence resonance energy transfer (FRET). Neither the wild type HspB8 nor its fluorescent chimeras were able to form stable heterooligomeric complexes with the wild type HspB1 and HspB5. Homo- and hetero-FRET was used for analysis of subunit exchange of small heat shock proteins. The apparent rate constant of subunit exchange was temperature-dependent and was higher for HspB6 forming small oligomers than for HspB1 forming large oligomers. Replacement induced by homologous subunits was more rapid than the replacement induced by heterologous subunits of small heat shock proteins. Fusion of fluorescent proteins might affect oligomeric structure of small heat shock proteins, however fluorescent chimeras can be useful for investigation of heterooligomeric complexes formed by sHsp and for analysis of kinetics of their subunit exchange.  相似文献   

17.
Heat shock proteins (Hsps) are expressed in mammalian embryonic, adult and aging lens, cornea and retina. These proteins, particularly those belonging to the family of small Hsps, such as αA-crystallin (HspB4) and αB-crystallin (HspB5), play important roles in the differentiation of lens cells and are essential for the maintenance and protection of the supraorganization of proteins in differentiated corneal and lens fiber cells. Hsps are molecular chaperones characterized by their protective activity against different types of stress. They also have anti-apoptotic and anti-oxidant functions that help lens and corneal cells to better cope with the oxidative conditions that result from light induced injuries. They are also effective to protect the retina against the high rate of oxidative metabolism observed in this tissue. The goal of this review is to highlight recent works describing the expression and function(s) of the different Hsps as an attempt to better understand their roles in the normal and pathological eye. Particular emphasis is given to the α-crystallin polypeptides which, in addition to their protective functions, are key structural polypeptides that are essential for the refractive and light focusing properties of the lens, a property demonstrated by the caractogenic potential of their mutation.  相似文献   

18.
Hsp90 is an essential chaperone that requires large allosteric changes to determine its ATPase activity and client binding. The co‐chaperone Aha1, which is the major ATPase stimulator in eukaryotes, is important for regulation of Hsp90's allosteric timing. Little is known, however, about the structure of the Hsp90/Aha1 complex. Here, we characterize the solution structure of unmodified human Hsp90/Aha1 complex using NMR spectroscopy. We show that the 214‐kDa complex forms by a two‐step binding mechanism and adopts multiple conformations in the absence of nucleotide. Aha1 induces structural changes near Hsp90's nucleotide‐binding site, providing a basis for its ATPase‐enhancing activity. Our data reveal important aspects of this pivotal chaperone/co‐chaperone interaction and emphasize the relevance of characterizing dynamic chaperone structures in solution.  相似文献   

19.
Ischemic stroke leads to cellular dysfunction, cell death, and devastating clinical outcomes. The cells of the brain react to such a cellular stress by a stress response with an upregulation of heat shock proteins resulting in activation of endogenous neuroprotective capacities. Several members of the family of small heat shock proteins (HspBs) have been shown to be neuroprotective. However, yet no systematic study examined all HspBs during cerebral ischemia. Here, we performed a comprehensive comparative study comprising all HspBs in an animal model of stroke, i.e., 1 h transient middle cerebral artery occlusion followed by 23 h of reperfusion. On the mRNA level out of the 11 HspBs investigated, HspB1/Hsp25, HspB3, HspB4/αA-crystallin, HspB5/αB-crystallin, HspB7/cvHsp, and HspB8/Hsp22 were significantly upregulated in the peri-infarct region of the cerebral cortex of infarcted hemispheres. HspB1 and HspB5 reached the highest mRNA levels and were also upregulated at the protein level, suggesting that these HspBs might be functionally most relevant. Interestingly, in the infarcted cortex, both HspB1 and HspB5 were mainly allocated to neurons and to a lesser extent to glial cells. Additionally, both proteins were found to be phosphorylated in response to ischemia. Our data suggest that among all HspBs, HspB1 and HspB5 might be most important in the neuronal stress response to ischemia/reperfusion injury in the brain and might be involved in neuroprotection.  相似文献   

20.
AKT activity has been reported in the epidermis associated with keratinocyte survival and differentiation. We show in developing skin that Akt activity associates first with post-proliferative, para-basal keratinocytes and later with terminally differentiated keratinocytes that are forming the fetal stratum corneum. In adult epidermis the dominant Akt activity is in these highly differentiated granular keratinocytes, involved in stratum corneum assembly. Stratum corneum is crucial for protective barrier activity, and its formation involves complex and poorly understood processes such as nuclear dissolution, keratin filament aggregation, and assembly of a multiprotein cell cornified envelope. A key protein in these processes is filaggrin. We show that one target of Akt in granular keratinocytes is HspB1 (heat shock protein 27). Loss of epidermal HspB1 caused hyperkeratinization and misprocessing of filaggrin. Akt-mediated HspB1 phosphorylation promotes a transient interaction with filaggrin and intracellular redistribution of HspB1. This is the first demonstration of a specific interaction between HspB1 and a stratum corneum protein and indicates that HspB1 has chaperone activity during stratum corneum formation. This work demonstrates a new role for Akt in epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号