首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small heat shock proteins have been characterized in vitro as ATP-independent molecular chaperones that can prevent aggregation of un- or mis-folded proteins and assist in their refolding with the help of ATP-dependent chaperone machines (e.g., the Hsp70 proteins). Comparison of the functionality of the 10 human members of the small HSPB family in cell models now reveals that some members function entirely differently and independently from Hsp70 machines. One member, HSPB7, has strong activities to prevent toxicity of polyglutamine-containing proteins in cells and Drosophila, and seems to act by assisting the loading of misfolded proteins or small protein aggregates into autophagosomes.  相似文献   

2.
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   

3.
4.
5.
Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.  相似文献   

6.
7.
The workshop was entitled “The Small HSP World” and had the mission to bring together investigators studying small heat shock proteins (sHSPs). It was held at Le Bonne Entente in Quebec City (Quebec, Canada) from October 2 to October 5 2014. Forty-four scientists from 14 different countries attended this workshop of the Cell Stress Society International (CSSI). The small number of participants stimulated interesting discussions, and the resulting informal atmosphere was appreciated by everybody. This article provides highlights from talks and discussions of the workshop, giving an overview of the latest work on sHSPs.  相似文献   

8.
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) – and thus generally restoring the disturbed protein homeostasis associated with such diseases – has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or ‘barcoded’ by a different set of HSPs that can rescue specific types of aggregation. Some of these ‘non-canonical’ HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated – so-called chaperonopathies – which are also discussed in this Review.KEY WORDS: Chaperonopathies, Heat shock protein, Protein-aggregation diseases  相似文献   

9.
10.
beta-Amyloid (Abeta) is the primary protein component of senile plaques in Alzheimer's disease (AD) and has been implicated in neurotoxicity associated with the disease. Abeta aggregates readily in vitro and in vivo, and its toxicity has been linked to its aggregation state. Prevention of Abeta aggregation has been investigated as a means to prevent Abeta toxicity associated with AD. Recently we found that Hsp20 from Babesia bovis prevented both Abeta aggregation and toxicity [S. Lee, K. Carson, A. Rice-Ficht, T. Good, Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity, Protein Sci. 14 (2005) 593-601.]. In this work, we examined the mechanism of Hsp20 interaction with Abeta1-40 and compared its activity to that of other small heat shock proteins, carrot Hsp17.7 and human Hsp27. While all three small heat shock proteins were able to prevent Abeta aggregation, only Hsp20 was able to attenuate Abeta toxicity in cultured SH-SY5Y cells. Understanding the mechanism of the Hsp20-Abeta interaction may provide insights into the design of the next generation of Abeta aggregation and toxicity inhibitors.  相似文献   

11.
Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). Alpha-synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and alphaB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are approximately 2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by approximately 80% in a culture model while alphaB-crystallin reduces toxicity by approximately 20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.  相似文献   

12.
Telomeres as biomarkers for ageing and age-related diseases   总被引:4,自引:0,他引:4  
Telomeres in telomerase-negative cells shorten during DNA replication in vitro due to numerous causes including the inability of DNA polymerases to fully copy the lagging strand, DNA end processing and random damage, often caused by oxidative stress. Short telomeres activate replicative senescence, an irreversible cell cycle arrest. Thus, telomere length is an indicator of replicative history, of the probability of cell senescence, and of the cumulative history of oxidative stress. Telomeres in most human cells shorten during ageing in vivo as well, suggesting that telomere length could be a biomarker of ageing and age-related morbidity. There are two distinct possibilities: First, in a tissue-specific fashion, short telomeres might indicate senescence of (stem) cells, and this might contribute to age-related functional attenuation in this tissue. Second, short telomeres in one tissue might cause systemic effects or might simply indicate a history of high stress and damage in the individual and could thus act as risk markers for age-related disease residing in a completely different tissue. In recent years, data have been published to support both approaches, and we will review these. While they together paint a fairly promising picture, it needs to be pointed out that until now most of the evidence is correlative, that much of it comes from underpowered studies, and that causal evidence for essential pathways, for instance for the impact of cell senescence on tissue ageing in vivo, is still very weak.  相似文献   

13.
14.
Small heat shock proteins from extremophiles: a review   总被引:3,自引:0,他引:3  
Many microorganisms from extreme environments have been well characterized, and increasing access to genomic sequence data has recently allowed the analysis of the protein families related to stress responses. Heat shock proteins appear to be ubiquitous in extremophiles. In this review, we focus on the family of small heat shock proteins (sHSPs) from extremophiles, which are -crystallin homologues. Like the -crystallin eye lens proteins, sHSPs act as molecular chaperones and prevent aggregation of denatured proteins under heat and desiccation stress. Many putative sHSP homologues have been identified in the genomic sequences of all classes of extremophiles. Current studies of shsp gene expression have revealed mechanisms of regulation and activity distinct from other known hsp gene regulation systems. Biochemical studies on sHSPs are limited to thermophilic and hyperthermophilic organisms, and the only two available crystal structures of sHSPs from Methanocaldococcus jannaschii, a hyperthermophilic archaeon and a mesophilic eukaryote, have contributed significantly to an understanding of the mechanisms of action of sHSPs, although many aspects remain unclear.Communicated by D.A. Cowan  相似文献   

15.
The structure and properties of different members of a large family of small heat shock proteins (sHsp) playing an important role in cell homeostasis are described. Participation of the N-terminal domain in formation of large oligomers and chaperone activity of sHsp is analyzed. The structure of the α-crystallin domain of sHsp is characterized and the role of this domain in sHsp dimerization and chaperone activity is discussed. The properties of the C-terminal region of sHsp are described, and its participation in formation of large oligomers and chaperone activity are analyzed. The data from the literature on HspB1 and HspB3 mutations are presented, and involvement of these mutations in development of certain neurodegenerative diseases is discussed. Mutations of HspB4 are described and data on involvement of these mutations in development of cataract are presented. Multiple effects of HspB5 mutations are analyzed, and data are presented indicating that mutations of this protein are accompanied by development of different congenital diseases, such as cataract and different types of myopathies. The data on HspB6 and HspB8 mutations are presented, and feasible effects of these mutations on proteins structure are analyzed. Probable mechanisms underlying sHsp mutation-induced development of different congenital diseases are discussed.  相似文献   

16.
Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment.  相似文献   

17.
18.
Mutations in HSPB1 and HSPB8, members of the small heat shock protein family, have recently been shown to cause some distal motor neuropathies. Their function in motor neurones is now under scrutiny.  相似文献   

19.
In plants small heat shock proteins (sHsp) are abundantly expressed upon heat stress in vegetative tissue, however, sHsp expression is also developmentally induced in pollen. The developmental induction of sHsp has been related to the potential for stress-induced microspore embryogenesis. We investigated the polymorphism among sHsp and their expression during pollen development and after heat stress in tobacco. Real-time RT-PCR was used for quantification of mRNA of two known and nine newly isolated cDNAs representing cytosolic sHsp. At normal temperature most of these genes are not transcribed in vegetative tissues, however, all genes were expressed during pollen development. Low levels of mRNAs were found for sHsp-1A and -1B in early-unicellular stage, increasing four to sevenfold in mature pollen. Nine other genes are up-regulated in unicellular and down-regulated in bicellular pollen; three these genes show stage-specific expression. Western analysis revealed that cytosolic class I and II sHsp are developmentally expressed during all stages of pollen development. Different subsets of cytosolic sHsp genes are expressed in a stage-specific fashion suggesting that certain sHsp genes may play specific roles in early, others during later stages of pollen development. Heat stress results in a relatively weak and incomplete response in pollen: (i) the heat-induced levels of mRNA (excepting sHsp-2B, −3Cand -6) are much lower than in leaves, (ii) several sHsp are not detected after heat stress in pollen, although, they are heat-inducibly expressed in leaves. Application of heat stress, cold, and starvation, which induce microspore embryogenesis, modify mRNA levels and the patterns of 2-D-separated sHsp, but only heat stress enhances the expression of sHsp in microspores. There is no correlation of the expression of specific sHsp with the potential for microspore embryogenesis.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
Small heat shock proteins in Drosophila may confer thermal tolerance   总被引:12,自引:0,他引:12  
The four small heat shock proteins in Drosophila melanogaster are genetically linked and simultaneously synthesized, both in response to high temperature and, developmentally, during puparium formation. In tissue culture cells their synthesis is inducible by the molting hormone, ecdysterone. We show here that accompanying their induction and accumulation, the cells and animals acquire thermal tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号