首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aggregation behavior of cobra venom (Naja naja naja) phospholipase A2 in the presence of lipids and Ca2+ was examined using ultracentrifugation and crosslinking techniques. Velocity sedimentation experiments were performed in sucrose gradients. The sedimentation coefficients of the cobra phospholipase A2 and various controls, including bovine serum albumin (BSA), malate dehydrogenase, carbonic anhydrase and pancreatic phospholipase A2, were calculated both in the presence and absence of ligands. The monomeric phospholipid, diheptanoylphosphatidylcholine, and the phospholipid analogue, dodecylphosphocholine (DPC), increased the sedimentation coefficient of the cobra phospholipase A2 from 2.2 S to 2.9 S, a value that is consistent with the formation of an enzyme dimer. The control proteins were unaffected by the presence of phospholipid, except for BSA, which apparently binds large amounts of DPC. Crosslinking experiments with glutaraldehyde showed that in the presence of diheptanoylphosphatidylcholine or DPC, the amount of crosslinked enzyme increased. Ca2+ had no effect on the aggregation state of the enzyme as measured by either technique. Both the ultracentrifugation data and crosslinking data are consistent with the hypothesis that the cobra venom phospholipase A2 exists as a dimer or higher-order aggregate in the presence of lipid substrate, although it is yet to be determined whether the functional subunit is a monomer, dimer or higher-order oligomer.  相似文献   

2.
Aggregation studies on fluorescein-coupled cobra venom phospholipase A2   总被引:1,自引:0,他引:1  
T L Hazlett  E A Dennis 《Biochemistry》1985,24(22):6152-6158
Phospholipase A2 from Naja naja naja venom (Indian cobra) undergoes a concentration-dependent aggregation, and at an assay concentration of 1 microgram mL-1, it exists as a monomer. However, there is some evidence that the enzyme is actually active as a dimer or higher order aggregate. Previous attempts to determine the aggregation state of the enzyme under actual assay conditions were thwarted by experimental difficulties due in part to the low enzyme concentrations required. This aggregation has now been studied by using fluorescence polarization. The extrinsic probe fluorescein isothiocyanate was coupled to the enzyme to serve as the fluorescence marker. Steady-state polarization measurements were made to determine changes in the aggregation state of the fluorescently tagged enzyme. The phospholipases A2 from Crotalus adamanteus (rattlesnake) and porcine pancreas, whose states of aggregation are known, were also labeled with fluorescein isothiocyanate and used as controls. It was found that the divalent metal ions Ca2+, a phospholipase cofactor, and Ba2+, an inhibitor, caused an increase in the cobra venom enzyme polarization, while Mn2+, Mg2+, and Co2+ did not. The water-soluble substrate diheptanoylphosphatidylcholine and the lipid analogue dodecylphosphocholine, when present below their respective critical micelle concentrations, also increased the polarization of the phospholipase-fluorescein conjugate. Thus, both cofactor and substrate caused an increase in the polarization, which implies an increase in the aggregation state. It is concluded that under assay conditions the phospholipase A2 exists in an aggregated form.  相似文献   

3.
A platelet aggregation inhibitor phospholipase A(2) (NND-IV-PLA(2)) was isolated from Naja naja (Eastern India) venom by a combination of cation and anion exchange chromatography. NND-IV-PLA(2) is the most catalytically active enzyme isolated from the Indian cobra venom. The acidic PLA(2) profile of Eastern regional Indian cobra venom is distinctly different from that of the western regional venom. However the acidic PLA(2)s from both the regions follow the pattern of increasing catalytic activity with increase in acidic nature of the PLA(2) isoform. NND-IV-PLA(2) is a Class B1 platelet aggregation inhibitor and inhibits platelet aggregation induced by ADP, collagen and epinephrine. Modification of active site histidine abolishes both catalytic activity and platelet aggregation inhibition activities while aristolochic acid, a phospholipase A(2) inhibitor has only partial effect on the two activities.  相似文献   

4.
We have investigated the action and substrate specificity of phospholipase A2 (EC 3.1.1.4) purified from cobra venom (Naja naja naja) toward intact and Triton-solubilized human erythrocytes, toward ghost membranes, and toward extracted ghost lipids in mixed micelles with Triton X-100. We have found that: (i) phospholipids in the outer surface of intact erythrocytes are extremely poor substrates for the phospholipase, (ii) phospholipids in ghost erythrocyte membranes and in Triton-solubilized erythrocytes are suitable substrates for the enzyme, (iii) in these latter systems which contain a mixture of lipids, phosphatidylethanolamine is preferentially hydrolyzed, whereas in model studies on individual phospholipid species in mixed micelles with Triton, phosphatidylcholine is the preferred substrate of the enzyme, and (iv) the preferential hydrolysis of phosphatidylethanolamine is also observed for extracted ghost lipid mixtures in mixed micelles. These results demonstrate a dependence of phospholipase A2 activity on the ghosting procedure and a dependence of substrate specificity on the presence of other lipids. The relevance of these findings to the interpretation of membrane lipid asymmetry studies utilizing phospholipases is considered in detail.  相似文献   

5.
The basic phospholipase A2 from Naja nigricollis (African spitting cobra) snake venom is enzymatically less active but more toxic than the acidic phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom, following injection into the right lateral ventricle of the brain of rats. When radiolabeled with 125I, these phospholipases A2 retained enzymatic activities and lethal potencies. Both enzymes bound with high affinity and specificity to brain synaptic plasma membrane preparations in vitro even in the absence of calcium, suggesting a non-catalytic binding. The acidic enzyme, in a calcium-free medium, had two binding components with Kd values of 1 X 10(-10) and 2.75 X 10(-8) M and Bmax values of 6 X 10(-13) and 3.4 X 10(-11) mol/mg, respectively. Multiple specific and nonspecific binding components were observed for each phospholipase A2; saturability for all of the binding sites was conclusively demonstrated only for the N. naja atra phospholipase A2 in a calcium-free medium (Bmax = 3.4 X 10(-11) mol/mg). The levels of specific and total binding were 150 pmol/mg and 450 pmol/mg, respectively, for the comparatively toxic enzyme and 15 pmol/mg and 35 pmol/mg, respectively, for the comparatively nontoxic enzyme at a concentration of 2.5 X 10(-8) M. These levels of binding (both total and specific) were directly correlated with the intraventricular lethal potencies of the phospholipases A2 (0.5 and 5.0 micrograms/rat for the N. nigricollis and N. naja atra phospholipases A2, respectively), suggesting a possible relationship between binding and lethal potency. Carbamylation of lysines reduced the levels of binding and the lethal potencies of both enzymes to a greater extent than their enzymatic activities. Pretreatment with high temperature, proteinases, phospholipases A2 or C suggested that radiolabeled phospholipase A2 binds to phospholipids rather than proteins. However, only the N. naja atra phospholipase A2 manifested a strict dependence on a divalent cation (Ca2+ or Sr2+) for most of its binding. The N. nigricollis enzyme demonstrated a much lower rate of dissociation from synaptic plasma membranes than did N. naja atra phospholipase A2, suggesting that hydrophobic interactions are more important in the binding of the more toxic enzyme as compared to the less toxic enzyme. It is proposed that differences in the extent of high-affinity noncatalytic binding to membrane phospholipids may be at least partly responsible for the marked difference in central toxicities of these two phospholipases A2.  相似文献   

6.
1-stearyl, 2-stearoylaminodeoxy phosphatidylcholine, a structurally modified phospholipid substrate analog exhibits potent and reversible inhibition of phospholipase A2 from cobra venom (N. naja naja). The apparent KI values determined in two different assay systems employing phosphatidylcholine-surfactant mixed micelles are in reasonable agreement (40 microM and 16 microM) and indicate that the inhibitor binds to the enzyme as much as two orders of magnitude more tightly than does dipalmitoyl phosphatidylcholine. With phosphatidylethanolamine as substrate, the kinetics are more complicated as the analog also exhibits activation, presumably at a second binding site on the enzyme.  相似文献   

7.
A series of structurally modified phospholipids have been used to delineate the structural features involved in the interaction between cobra venom (Naja naja naja) phospholipase A2 and its substrate. Special emphasis has been placed on sn-2 amide analogues of the phospholipids. These studies have led to a very potent, reversible phospholipase A2 inhibitor. A six-step synthesis of this compound, 1-palmitylthio-2-palmitoylamino-1,2-dideoxy-sn-glycero-3- phosphorylethanolamine (thioether amide-PE), was developed. Other analogues studied included 1-palmitylthio-2-palmitoylamino-1,2-dideox-sn- glycero-3-phosphorylcholine, 1-palmityl-2-palmitoylamino-2- deoxy-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-palmitoylamino-2-deoxy-sn-glycero-3- phosphorylcholine, 1-palmitylthio- 2([(tetradecyloxy)carbonyl]amino)-1,2-dideoxy-sn-glycero-3- phosphorylcholine, 1-palmitoyl- 2([(octadecylylamino)carbonyl]amino)-2-deoxy-sn-glycero-3- phosphorylcholine, and sphingomyelin. Inhibition studies used the well defined Triton X-100 mixed micelle system and the spectroscopic thio assay. The phospholipid analogues showed varying degrees of inhibition. The best inhibitor was the thioether amide-PE which had an IC50 of 0.45 microM. In contrast, sphingomyelin, a natural phospholipid that resembles the amide analogues, did not inhibit but rather activated phosphatidylcholine hydrolysis. This systematic study of phospholipase A2 inhibition led to the following conclusions about phospholipid-phospholipase A2 interactions: (i) sn-2 amide analogues bind tighter than natural phospholipids, presumably because the amide forms a hydrogen bond with the water molecule in the enzyme active site, stabilizing its binding. (ii) Inhibitor analogues containing the ethanolamine polar head group appear to be more potent inhibitors than those containing the choline group. This difference in potency may be due solely to the fact that the cobra venom phospholipase A2 is activated by choline-containing phospholipids. Thus, choline-containing non-hydrolyzable analogues both inhibit and activate this enzyme. Both of these effects must be taken into account when studying phosphatidylcholine inhibitors of the cobra venom enzyme. (iii) The potency of inhibition of these analogues is significantly enhanced by increasing the hydrophobicity of the sn-1 functional group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In the present work, we obtained an immobilized phospholipase A(2) system through covalent coupling by using an acrylic polymer Eupergit C as support. The immobilized enzyme from cobra venom (Naja naja naja) showed good retention activity and excellent stability. Both properties are of great importance for biomedical applications such as hypercholesterolemia treatments.  相似文献   

9.
An acidic, lethal phospholipase Az was purified to electrophoretic homogeneity from the venom of the Malayan cobra (Naja naja sputatrix). The enzyme has an isoelectric point of 5.58, a molecular weight of 12000, and a medium lethal dose (LD50) of 0.86 micrograms/g in mice by intravenous injection. The enzyme also exhibited weak anticoagulant and edema-forming activities. The amino acid composition of the enzyme is similar to those of other cobra venom phospholipases Az.  相似文献   

10.
Studies are reported on the inhibition of phospholipase A2 (PLA2) from porcine pancreas, cobra (Naja naja) venom, and the P388D1 macrophage-like cell line by human recombinant lipocortin I and bovine lung calpactin I. Membrane vesicles prepared from 1-stearoyl,2-arachidonoyl phosphatidylcholine (PC) and other PCs were utilized as substrate. Binding studies using sucrose flotation gradients showed that both lipocortin I and calpactin I bind to these vesicles although less tightly than to vesicles prepared from anionic phospholipids or fatty acids. Binding to PC was somewhat enhanced by Ca2+. Inhibition of cobra venom PLA2 was not observed when PC vesicles were used as substrate but was when dipalmitoyl phosphatidylethanolamine was used. Both the pancreatic and macrophage enzymes were inhibited when acting on PC. Interestingly, the inhibition of the macrophage enzyme toward PC depended on the fatty acid attached to the sn-2 position of PC with arachidonate greater than oleate greater than palmitate. Inhibition was also highest at low [PC]; these inhibition results can be explained by the "substrate depletion model" (Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. (1987) J. Biol. Chem. 262, 1698-1705). Experimental and theoretical considerations suggest that the in vitro inhibition by lipocortins of this macrophage PLA2 from a cell that makes lipocortin and is active in prostaglandin production is due to effects on substrate availability rather than direct inhibition.  相似文献   

11.
Malayan cobra (Naja naja sputatrix) venom was found to exhibit an in vitro anticoagulant activity that was much stronger than most common cobra (genus Naja) venoms. The most potent anticoagulants of the venom are two lethal phospholipase A2 enzymes with pI's of 6.15 and 6.20, respectively. The anticoagulant activity of the venom is due to the synergistic effect of the venom phospholipase A2 enzymes and polypeptide anticoagulants. Bromophenacylation of the two phospholipase A2 enzymes reduced their enzymatic activity with a concomitant drop in both the lethal and anticoagulant activities.  相似文献   

12.
1. The L-amino acid oxidase, hyaluronidase, alkaline phosphomonoesterase, protease, phosphodiesterase, acetylcholinesterase, phospholipase A and 5'-nucleotidase activities of 47 samples of venoms from all the six species of cobra (Naja), including five subspecies of Naja naja, were examined. 2. The results demonstrated interspecific differences in the venom contents of phospholipase A, acetylcholinesterase, hyaluronidase and phosphodiesterase. These differences in venom enzyme contents can be used for the differentiation of species of the genus Naja. 3. Thus, our results revealed a correlation between the enzyme composition of venom and the taxonomic status of the snake at the species level for the genus Naja.  相似文献   

13.
Indian cobra (Naja naja naja) venom is reported to contain multiple forms of phospholipase A2. Only a couple of them have been isolated and characterized. A lethal phospholipase A2 (NN-IVb1-PLA2) from Naja naja naja venom has been purified in three steps involving CM-Sephadex C-25, Sephadex G-50 and rechromatography on CM-Sephadex C-25 columns. It is a basic protein with pl value between 7-7.5 and has molecular weight between 11,000-11,500. The LD50 of NN-IVb1-PLA2 is 1.2 mg/K g body weight. It induces neurotoxic symptoms in the experimental mice and is devoid of myotoxic, anticoagulant, edema inducing and direct hemolytic activities.  相似文献   

14.
Manoalogue, a synthetic analogue of the sea sponge-derived manoalide, has been previously shown to partially inactivate the phospholipase A2 from cobra venom (Reynolds, L. J., Morgan, B. P., Hite, E. D., Mihelich, E. D., & Dennis, E. A. (1988) J. Am. Chem. Soc. 110, 5172) by reacting with enzyme lysine residues. In the present study, the inactivation of the phospholipases A2 from pig pancreas, bee venom, and cobra (Naja naja naja) venom by manoalogue was studied in detail. Manoalogue-treated enzymes were examined in the scooting mode on vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol. Here the native enzymes bound irreversibly to the vesicles and hydrolyzed all of the phospholipids in the outer monolayer without leaving the surface of the interface. All three manoalogue-treated enzymes showed reduced catalytic turnover for substrate hydrolysis in the scooting mode, and the modified enzymes did not hop from one vesicle to another. Thus, inactivation by manoalogue is not due to the decrease in the fraction of enzyme bound to the substrate interface. This result was also confirmed by fluorescence studies that directly monitored the binding of phospholipase A2 to vesicles. A chemically modified form of the pig pancreatic phospholipase A2 in which all of the lysine epsilon-amino groups have been amidinated was not inactivated by manoalogue, indicating that the modification of lysine residues and not the amino-terminus is required for the inactivation. Several studies indicated that the manoalogue-modified enzymes contain a functional active site. For example, studies that monitored the protection by ligands of the active site from attack by a alkylating agent showed that manoalogue-modified pig phospholipase A2 was capable of binding calcium, a substrate analogue, lipolysis products, and a competitive inhibitor. Furthermore, relative to native enzymes, manoalogue-modified enzymes retained significantly higher catalytic activities when acting on water-soluble substrates than when acting on vesicles in the scooting mode. Intact manoalogue had no affinity for the catalytic site on the enzyme as it did not inhibit the enzyme in the scooting mode and it did not protect the active site from alkylation. Pig pancreatic phospholipase A2 bound to micelles of 2-hexadecyl-sn-glycero-3-phosphocholine was resistant to inactivation by manoalogue, suggesting that the modification of lysine residues on the interfacial recognition surface of the enzyme was required for inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The major form of phospholipase A2 from cobra venom (Naja naja naja) was prepared in 30% yield and was homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate and on Sephadex G-100 chromatography. The monomer molecular weight is about 11,000 according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Ultracentrifugation and molecular sieve techniques were employed to confirm the molecular weight and to demonstrate a concentration-dependent aggregation of the enzyme. It was found that at concentrations below about 0.05 mg ml(-1), the enzyme exists predominantly in the monomeric form; kinetic studies are usually conducted in much more dilute solutions (0.2 mug ml(-1)). The amino acid composition of the enzyme is reported. Of special interest is the presence of five to six disulfide bonds, 1 tryptophan residue, and 1 histidine residue. It is stable at high temperatures and is unusually resistant to denaturing agents. The isoelectric point was found to be 4.95. The findings that the protein is unusually resistant to denaturing agents and that it undergoes a concentration-dependent aggregation help to explain some of the previous reports in the literature on the apparent multiple forms of the cobra enzyme and their separation.  相似文献   

16.
Two toxic phospholipases A have been isolated from the venom of the Malayan cobra (Naja naja sputatrix). The phospholipases A were purified by successive ion-change chromatography on SP-Sephadex C-25, Sephadex G-75 gel filtration chromatography and successive Bio-Rex 70 ion-exchange chromatography. The purified toxic phospholipases A were homogeneous electrophoretically. They were designated as sputatrix phospholipase A-I and sputatrix phospholipase A-II. Positional specificity studies showed that they belong to the A2-type phospholipase A. The medium lethal dose 50% (LD50) values of the two phospholipases A are 0.27 and 0.28 μg/g, respectively, by intravenous injection and 1.05 and 1.00 μg./g, respectively, by intraperitoneal injection. The molecular weights of the two enzymes are 14 000 as determined by gel-filtration chromatography and SDS-polyacrylamide gel electrophoresis. Amino acid composition of sputatrix phospholipase A-I differs from sputatrix phospholipase A-II only by having one extra amino acid: a glutamic acid. Amino acid compositions of the two enzymes are also similar to those of other cobra venom phospholipases A.  相似文献   

17.
The full amino acid sequence of the acidic phospholipase A2 from Indian cobra (Naja naja naja) venom was determined and its tertiary structure examined by circular dichroism (CD). The sequence was aligned with other sequences of secreted phospholipase A2 from snakes of the genus Naja, using the progressive alignment method of Feng and Doolittle (J. Mol. Evol. (1987) 25, 351-360). The primary sequence of Naja naja naja phospholipases A2 shows up to 85% identity with the other acidic Naja phospholipase A2. CD studies indicate a 40-50% alpha-helical content in a tertiary structure which resists denaturation at high temperature, with or without chaotropic salts.  相似文献   

18.
The cobras Naja naja and N. kaouthia are abundant in eastern and north-eastern India, accounting for maximum snakebite deaths. Here we report on variation in the composition of Naja kaouthia and N. naja venom from eastern India on corresponding differences in the severity of pathogenesis. These two venoms differ in chromatographic elution profile through Sephadex G-50 and enzyme activity, protein and carbohydrate contents associated with each fraction. The presence of greater amounts of basic phospholipase A2, L-amino acid oxidase and low molecular weight membrane active polypeptides in the N. naja venom makes it more toxic than N. kaouthia venom. A commercial polyvalent antivenom raised against N. naja venom inactivates lethality and variety of toxic effects of homologous venom more effectively than N. kaouthia venom.  相似文献   

19.
A ribonuclease from cobra snake venom was isolated and purified to homogeneity using antibody-affinity chromatography, increasing the yield fourfold. The purified enzyme showed cytidylic acid specificity, as reported earlier. Further, the effects of temperature, pH, metal ions, inhibitors, and urea on the enzyme activity were studied. Snake venom RNase exhibited salt-dependent reversible association-dissociation behaviour. Immunological studies indicate that this enzyme shares one of the antigenic sites of RNase A. The partial N-terminal sequence of the enzyme showed considerable homology with phospholipases from snake venom; however, the enzyme itself did not show any phospholipase activity.  相似文献   

20.
A new fluorescent probe, prodan-PC, was synthesized by incubating thio-PC, a thiol ester analogue of phosphatidylcholine [1,2-bis(decanoylthio)-1,2-dideoxy-sn-glycero-3-phosphocholine], with acrylodan, a fluorescent thiol-reactive reagent [6-acryloyl-2-(dimethylamino)naphthalene], in the presence of phospholipase A2, which served to generate lysothio-PC in situ. Prodan-PC (PPC) showed maximum absorption in ethanol at 370 nm. The fluorescence emission spectrum showed maximum emission at 530 nm in water and at 498 nm in ethanol. In the presence of a saturating amount of phospholipase A2, the emission maximum shifted to about 470 nm. PPC showed a critical micellar concentration around 5 microM, with evidence of premicellar aggregation above 1 microM. Binding of PPC to Crotalus adamanteus phospholipase A2 was evidenced by an increase in emission at 480 nm and an increase in fluorescence anisotropy. An apparent dissociation constant of 0.323 microM was calculated for this enzyme complex. Binding was dependent on the presence of calcium ion and was abolished by blocking the active site with p-bromophenacyl bromide. Binding was also followed by energy transfer from tryptophan in the enzyme to PPC. Apparent dissociation constants for PPC complexes with phospholipases A2 from Naja naja naja and porcine pancreas and the prophospholipase A2 from porcine pancreas were 0.509, 0.107, and 0.114 microM, respectively. PPC was shown to inhibit the activity of pancreatic phospholipase A2 in thio-PC-sodium cholate mixed micelles. Inhibition studies were complicated because PPC can also serve as an activator of the snake venom enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号