首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental stress activates sigma B, the general stress response sigma factor of Bacillus subtilis, by a pathway that is negatively controlled by the RsbX protein. To determine whether stress activation of sigma B occurs by a direct effect of stress on RsbX, we constructed B. subtilis strains which synthesized various amounts of RsbX or lacked RsbX entirely and subjected these strains to ethanol stress. Based on the induction of a sigma B-dependent promoter, stress activation of sigma B can occur in the absence of RsbX. Higher levels of RsbX failed to detectably influence stress induction, but reduced levels of RsbX resulted in greater and longer-lived sigma B activation. The data suggest that RsbX is not a direct participant in the sigma B stress induction process but rather serves as a device to limit the magnitude of the stress response.  相似文献   

2.
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when the cell's energy levels decline or the bacterium is exposed to environmental stress (e.g., heat shock, ethanol). Physical stress activates sigma(B) through a collection of regulatory kinases and phosphatases (the Rsb proteins) which catalyze the release of sigma(B) from an anti-sigma(B) factor inhibitor. The means by which diverse stresses communicate with the Rsb proteins is unknown; however, a role for the ribosome in this process was suggested when several of the upstream members of the sigma(B) stress activation cascade (RsbR, -S, and -T) were found to cofractionate with ribosomes in crude B. subtilis extracts. We now present evidence for the involvement of a ribosome-mediated process in the stress activation of sigma(B). B. subtilis strains resistant to the antibiotic thiostrepton, due to the loss of ribosomal protein L11 (RplK), were found to be blocked in the stress activation of sigma(B). Neither the energy-responsive activation of sigma(B) nor stress-dependent chaperone gene induction (a sigma(B)-independent stress response) was inhibited by the loss of L11. The Rsb proteins required for stress activation of sigma(B) are shown to be active in the RplK(-) strain but fail to be triggered by stress. The data demonstrate that the B. subtilis ribosomes provide an essential input for the stress activation of sigma(B) and suggest that the ribosomes may themselves be the sensors for stress in this system.  相似文献   

3.
4.
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when intracellular ATP levels fall or the bacterium experiences environmental stress. Stress activates sigma(B) by means of a collection of regulatory kinases and phosphatases (the Rsb proteins), which catalyze the release of sigma(B) from an anti-sigma factor inhibitor. By using the yeast dihybrid selection system to identify B. subtilis proteins that could interact with Rsb proteins and act as mediators of stress signaling, we isolated the GTP binding protein, Obg, as an interactor with several of these regulators (RsbT, RsbW, and RsbX). B. subtilis depleted of Obg no longer activated sigma(B) in response to environmental stress, but it retained the ability to activate sigma(B) by the ATP responsive pathway. Stress pathway components activated sigma(B) in the absence of Obg if the pathway's most upstream effector (RsbT) was synthesized in excess to the inhibitor (RsbS) from which it is normally released after stress. Thus, the Rsb proteins can function in the absence of Obg but fail to be triggered by stress. The data demonstrate that Obg, or a process under its control, is necessary to induce the stress-dependent activation of sigma(B) and suggest that Obg may directly communicate with one or more sigma(B) regulators.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
In the Gram-positive bacterium Bacillus subtilis, the activity of the alternative sigma factor sigma(B) is triggered upon exposure of the bacteria to environmental stress conditions or to nutrient limitation. sigma(B) activity is controlled by protein-phosphorylation-dependent interactions of anti-sigma with anti-anti-sigma factors. Under stress conditions, the phosphatase RsbU triggers release of sigma(B) and thus induces the expression of stress genes. RsbU activity is controlled by three proteins, RsbR, RsbS and RsbT which form a supramolecular complex called the stressosome. Here we review the occurrence of the genes encoding the stressosome proteins (called the RsbRST module) in a wide variety of bacteria. While this module is linked to the gene encoding sigma(B) and its direct regulators in B. subtilis and its close relatives, genes encoding two-component regulatory systems and more complex phosphorelays are clustered with the RsbRST module in bacteria as diverse as cyanobacteria, bacteroidetes, proteobacteria, and deinococci. The conservation of the RsbRST module and its clustering with different types of regulatory systems suggest that the stressosome proteins form a signal sensing and transduction unit that relays information to very different output modules.  相似文献   

14.
15.
16.
17.
18.
Competence for transformation: a matter of taste   总被引:6,自引:0,他引:6  
  相似文献   

19.
YtvA of Bacillus subtilis consists of light, oxygen or voltage (LOV) domain and sulfate transporter and anti-sigma antagonist (STAS) domain, and was reported to act as a photoreceptor, sensing light signals through the LOV domain, like a plant blue light receptor, phototropin. At the same time, YtvA was reported to act as a positive regulator for stress responsive-gene expression regulated by sigma(B) factor. Here we indicate that, like phototropins, the conserved Cys residue among the LOV domains is required for light-sensing in YtvA in vitro, possibly by the photoadduct formation, and YtvA forms a homodimer via its LOV domain, independently to light signal. We also indicate that, when ytvA expression is in normal level, light itself does not trigger sigma(B) activation, but a photo-enhancement of sigma(B) activity, activated by salt stress, occurs only in the presence of ytvA. The conserved Cys residue in the LOV domain and the STAS domain seem to be responsible for light-sensing and signal-transmission to the sigma(B) regulatory network, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号